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ABSTRACT 

 

In the current era of modern technology, a human cannot think to survive without software as such key area of 

attention of software manufacturer is to produce bug-free software and maintain the reliability and compatibility 

with human activities dependent upon software embedded devices. The manner in which the software will perform 

in a random field environment is a very major issue to study. Taking effects of random field environment into 

account, in this paper we develop a generalized software reliability growth model (G-SRGM) with generalized fault 

coverage function. For demonstrating the better performance of the proposed model, two data sets are taken and 

computational results of proposed models are compared with the existing models using Least Square Estimation 

(LSE) technique in MATLAB software. The three goodness-of-fit criteria such as the sum of square error, R-square, 

and root mean square error are also used for comparison. 

 

Keywords: Software Reliability, Non-Homogeneous Poisson Process, Testing Coverage, Random Operating 

Environment, Least Square Estimation. 

 

1. INTRODUCTION 

 
With the progression of computer technology, human life is being entirely dependent on software embedded into 

gadgets/equipment, manufacturing/assembly lines, and many more systems. The development of reliable and 

sustainable software is a very daunting job for software manufactures. Many software projects cannot afford the 

failure of software because in many cases it affects directly or indirectly human life such as in Medical Appliances, 

Military weapons, Safety-critical systems, etc. Several non-homogeneous   Poisson process (NHPP) based software 

reliability growth models (SRGMs) have been proposed in literature but no generalized model is available that can 

predict the mean value function, reliability and optimization issues and other parameters of model with generalized 

fault coverage function in the scenario when software operates in random environment. 

 

Many software reliability growth models have been discussed in the last three decades and still, immense researches 

are also in the process to achieve the pre-specified reliability of the real time software system. The most classic 

model to analyze software failures was developed by Goel and Okumoto (1979). After that, Obha (1984) and Obha 

et al. (1984) extended the work presented in the article of Goel&Okumoto (1979) by considering the different failure 

rates. A plenty number of research papers have been available in SRGM literature having several different 

conditions such as perfect/imperfect debugging, various types of testing effort functions (TEF’s), coverage factor, 

change-point phenomenon, delay function, environment effects and many more.  

 

Software reliability growth models are widely used to facilitate the more precise information regarding failures and 

reliability according to the user’s need. In 1996, Gokhale et al. proposed the enhanced non-homogeneous Poisson 

process (NHPP) based model by incorporating the test coverage functions during the testing and operational both 

phases. Pham and Zhang (2003) used the testing coverage function in the analytical model based on NHPP to 

discuss the failure/faults and obtained the expected cost and optimal release policies. Xie and Yang (2003) analyzed 

software model by including the imperfect debugging feature which is a realistic aspect in the operating 

environment in particular when the imperfect debugging affects the software development cost. Chatterjee and 

Shukla (2016) examined the effects of test coverage function along with change-point and time-dependent fault 

detection to study the software reliability. Rani et al. (2021) proposed a software reliability model considering the 
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uncertainties of field environments using testing coverage function. Recently, Yadav and Yadav (2023) used 

machine learning methods to optimize and predict the software reliability. 

 

During last two decades, some models have appeared which have included the assumptions of random operating 

environment and developed SRGMs by using the NHPP. Zhang et al. (2002) discussed the dissimilarity between the 

system testing and operating environment. Zhang and Pham (2006) used a field failure rate to balance the testing and 

field reliability, cost and other parameters for making a better decision. Teng and Pham (2006) proposed a new 

methodology subject to a random field environment. Chang et al. (2014) and Pham (2014) discussed the SRGMs 

subject to random field environment with loglog fault detection rate and testing coverage function. Again Pham 

(2014) used a Vtub-shaped fault detection rate to predict better results in the field environment. Zhu et al. (In 2015) 

surveyed the various environment functions and their impact on software reliability assessment incorporating 

different categories. They have used various statistical methods including the goodness-of-fit criteria to analyze the 

software’s behavior in the operating field. Zhu and Pham (2016) and Li and Pham (2017) extended the theory of 

randomness of field environment using testing coverage function in the more realistic situation by incorporating the 

imperfect debugging. Song et al. (2019) analyzed the sensitivity of reliability function using new testing coverage 

function under random operating environment. Li and Pham (2019) covered the imperfect debugging phenomenon 

to explore the SRGM in uncertain environment. Recently, Zhu and Pham (2020) suggested a new reliability model 

in multiple environments to examine the effects with stochastic fault detection process. Li and Pham (2021) 

discussed he fault detection and correction process using different fault amount. Lin and Huang (2022) used 

queueing based simulation for analyzing reliability. 

 

In this paper, we consider a generalized S-shaped testing coverage function to develop the SRGM. The NHPP based 

formulism is done to demonstrate the effects of random operating environment. For specific cases of our model, we 

compare the obtained results with the existing ones. The generalized proposed model affirms the better outcomes by 

using the goodness of fit criteria than existing ones. For this reliability indices prediction purpose, the expected 

number of detected faults and reliability using the generalized testing coverage function and random operating 

environment are derived in section 2. Section 3 is devoted to the specific testing coverage function and their 

respective mean value function. Software failure data is given in section 4 and the proposed model is compared with 

the existing models in this section based on goodness-of-fit criteria. Finally, concluding remarks are given in section 

5.   

 

2. MODEL DESCRIPTION 

 
In this paper, we develop SRGM to analyze the effects of generalized testing coverage function in random operating 

environment and present the analytical formulation for the expected number of detected faults and reliability. For the 

mathematical formulation of SRGM, we assume that the mean number of failures per unit time follows the non-

homogeneous Poisson process (NHPP). The expected number of detected faults in the random field environment is 

measured by the following differential equation (Pham, 2016) 

 

 )t(mA)t(C
dt

)t(dm
k −=  … (1) 

 

where A is the fault content function and η denotes the uncertainty of the testing coverage function in the random 

field environment with a generalized probability density function with two parameters α,β ≥ 0. So that mean value 

function m(t) in the general form (G-SRGM) can be obtained from equation (1)  
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2.1 Testing Coverage 

 

Testing coverage is the keynote feature of software testing to figure out how many faults have been covered and 

how much effort is required to fulfill the pre requisitions of the customer’s interest. We denote the the parameter 

reflecting the quality of testing by .Here we use the following generalized testing coverage function (G-TCF). 
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3. PERFORMANCE INDICES 
 

3.1 Mean value function 

Using equations (3) and (4) in equation (2), we get the G-SRGM as 
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3.2 Reliability Evaluation 

 

By assuming that the software faults will not occur in operational phase (T, T+x] and (T ≥ 0, x > 0), the reliability 

function for the software can be obtained as 

 

 ( / ) exp ( ) ( )R x T m T x m T = − + − 

…(6)

 

4. SPECIFIC TESTING COVERAGE FUNCTIONS AND MEAN VALUE 

FUNCTIONS  
 

For the validity of the proposed model, in this section we are considering the different values of k and analyze the 

effects of coverage function on the mean value function. It is evident that as the value of k increases, more faults can 

be covered The three cases are considered:  
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Case (ii): When k=2. 
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Case (iii): When k=3 
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The mean vale functions for some well known models and proposed generalized model are summarized in table 1. 

 

Table 1: Mean value functions for the existing and proposed NHPP based SRGM. 

 

S. No. Model name Researchers Mean Value Function [m(t)] 
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5. SOFTWARE FAILURE DATA AND NUMERICAL RESULTS 
 

To validate the findings of the suggested model, test data of telecommunication system for two phases (phase I and 

Phase II) given by Zhu and Pham (2016) are used and comparison of our model with the existing models are 

presented in Tables 2 and 3, respectively. For each phase, the number of detected faults during each week of the test 

is recorded and the aggregate number of faults is observed. As shown in Tables 2 and 3, the system test hours per 

week are observed as 356 and 416 for phase I and II data, respectively. To perform better results and discussion, 

parameter estimation was implemented using Least Square Estimation (LSE) in MATLAB Software. 

 

From figs 1(a), 2(a) and 3 (a), we interpret the testing coverage function by varying the parameter δ. It is seen that as 

δ is increasing, the testing coverage function is also increasing rapidly and their respective mean value functions are 

also figured out for both phases of data. Figs 4(a & b) depict the comparison of the mean value function of the 

proposed model with the existing models for both phases of data I and II, respectively. It is observed that most of the 

faults are covered for both phases.  

 

 

(a)                                                       (b) 

Figure 1: (a) Testing Coverage Function by varying b and (b) MVF  for case (i) 

 

 

(a)                                                                   (b) 

Figure 2: (a) Testing Coverage Function by varying b and (b) MVF  for case (ii) 
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(a)                                                                  (b) 

Figure 3:(a) Testing Coverage Function by varying b and (b) MVF  for case  (iii) 

 

Tables 4 & 5 summarize the results of the estimated parameters and the goodness-of-fit criteria such as Sum of 

Square Error (SSE), R-Square and Root Mean Square Error (RMSE). The statistical indices of all 9 models for both 

data sets given in table 1, are computed using the Least Square Estimation (LSE) technique in MATLAB software. 

For the illustration purpose, we also evaluate the mean value function for k=1, 2, 3 as case 1, case 2, and case 3, 

respectively. It is observed from tables 4 and 5 that on increasing the value of k, the number of errors decreases i.e., 

as a result the efficiency and compatibility of the software improve. In the proposed model, SSE=23.27 & 

RMSE=1.17 (for case 1), SSE=19.71 & RMSE=1.077 (for case 2) and SSE=16.83 & RMSE=0.9948 (for case 3) for 

phase I data are noticed. The computational results of SSE& RMSE for both cases are recorded in Table 5 by 

considering the phase II data.  

 

 

Table 4: Model parameter estimation and comparison criteria for phase I data set 
 

Model a b   c n A α β SSE 

R-

Squar

e 

RMSE 

Goel-Okumoto (G-

O)  
10790 

0.000117

4 
- - - - - - 73.3 0.9546 1.964 

Delayed S-Shaped  39.82 0.1104 - - - - - - 28.38 0.9824 1.222 

Inflection S-Shaped  26.69 0.2919 - - - - - 21.71 12.14 0.9925 0.8212 

Yamada imperfect 

debugging  0.02789 0.5418 - - - - 51.91  43.55 0.973 1.555 

PNZ  1.032e-10 0.388 - - - - 1.317 5.762 32.87 0.9796 1.351 

Pham-Zhang  0.004031 0.2919 - 26.68 - - 0.2069 21.68 12.14 0.9925 0.8711 

V tub-shaped fault 

detection rate   
0.7784 0.0261 - - 0.3981 495.7 0.934 - 76.16 0.9528 2.182 

Chang et al. (2014) 0.04105 2.187 - - 220.5 27.15 54.42 - 17.59 0.9891 1.049 

Logistic fault 

detection  
1.19 14.45 - 0.223 - 44.58 0.05575 49.49 46.41 0.9712 1.759 

Proposed 

model 

Case 1 - - 0.00443 - 1.229 38.99 0.001526 - 23.27 0.9856 1.17 

Case 2 - - 0.0155 - 0.7147 32.83 0.00169 - 19.71 0.9878 1.077 

Case 3 - - 0.0156 - 0.4949 29.54 0.00012 - 16.83 0.9896 0.9948 
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Table 5: Model parameter estimation and comparison criteria for phase II data set 
 

Model Name a b 
  

c n A α β SSE 
R-

Square 
RMSE 

Goel-Okumoto (G-

O) Model  
10200 

0.000208

8 
- - - - - - 125.9 0.9694 2.574 

Delayed S-Shaped 

Model  
62.3 0.119 - - - - - - 62.19 0.9849 1.809 

Inflection S-Shaped 

Model 
46.54 0.240 - - - - - 12.22 33.67 0.9918 1.368 

Yamada imperfect 

debugging Model 
1.985 0.415 - - - - 1.2 - 89.45 0.9783 2.229 

PNZ Model 1.86e-10 0.311 - - - - 2.195 1.964 76.74 0.9814 2.065 

Pham-Zhang Model 1.023 0.241 - 46.43 - - 0.00762 12.16 33.7 0.9918 1.451 

V tub-shaped fault 

detection rate 

model   

0.9577 0.009712 - - 4.795 1073 0.4854 - 129.7 0.9685 2.847 

Chang et al. Model 

(2014) 
0.05058 2.102 - - 182.6 43.58 66.81 - 62.14 0.9849 1.971 

Logistic fault 

detection model 
5.608 31.13 - 0.118 73.17 74.9 0.01981 - 115.8 0.9719 2.778 

Proposed 

model 

Case 1 - - 0.00341 - 0.8905 70.56 0.00168 - 59.33 0.9856 1.868 

Case 2 - - 0.01037 - 0.5572 57.2 0.00090 - 51.4 0.9875 1.739 

Case 3 - - 0.01502 - 0.4038 51.18 0.00016 - 45.57 0.9889 1.637 

 

All goodness-of-fit (SSE, R2, and RMSE) values are less than the other existing models for phase II also. Only the 

inflection S-shaped model (Obha, 1984) is depicting the lower values than any other model so the developer can 

choose the model according to the user’s prerequisite. Overall, it is noticed that SSE, R-Square and RMSE values 

are lower as such the proposed model is much better and compatible with random field environment in comparison 

to earlier model excluding inflection S-shaped model. The numerical illustration reveals that if the developer wants 

to improve the reliability of the software, it can possible by increasing the value of k in G-TCF according to the 

requirement of the user. 

 

Figure. 5 (a) &5 (b) and Figure. 6(a) & 6(b) depict the trends of expected number of faults removed and their 

correspondence reliability for the real data set of Phase I and II, respectively. The mean value function and 

reliability are calculated for the n=1, 2 and 3 and maximum reliability is achieved for n =3. It is concluded that as 

the value of n increases, the reliability also increases. It can be concluded from the Figures that if the testing runs for 

22 weeks and if we get the targeted reliability then the developer can release the software otherwise testing time can 

also increases.  
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(a)                                                                        (b) 

Figure 4: Comparison of proposed Mean Value Function with existing models for (a) phase I and (b) Phase II 

data sets 

 

 

 
(a)                                                                     (b) 

Figure 5: Mean Value Function and Reliability for Case 1, 2 and 3 for the Phase I Data 

 

 
(a)                                                                                 (b) 

Figure 6: Mean Value Function and Reliability for Case 1, 2 and 3 for the Phase II Data 
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6. CONCLUSIONS 
 

Keeping in mind the dependency of human life on the software operating in random field environment such as its 

testing environment, we have proposed a generalized software reliability growth model (G-SRGM) by including the 

more realistic feature of generalized testing coverage function (G-TCF). For interpretation purpose, G-TCF was 

considered for different level of testing efficiency (i.e. k=1,2,3).It was demonstrated that as the testing efficiency 

increases, more faults are covered. For the validation of the purpose, real time telecommunication system test data 

for two phases are considered. It is validated by taking numerical results that the proposed model is having the 

minimum errors during the estimation and on increasing the value of k in G-TCF, more errors can be covered for 

both phases of data. Based on our investigation, it can be concluded that proposed model is significantly better than 

other existing models and may allow the software developers to fulfill the requirements of the users operating in 

different environment. Future work may be extended by considering testing effort functions, different fault detection 

rates, and change-point phenomenon with random field environment. 
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Appendix 
 

Week 

Index 

Exposure 

time 

(cumulative 

system test 

hours) 

Fault 
Cumulative 

fault 
Week Index 

Exposure 

time 

(cumulative 

system test 

hours) 

Fault 
Cumulative 

fault 

1 356 1 1 12 4272 2 15 

2 712 0 1 13 4628 4 19 

3 1068 1 2 14 4984 0 19 

4 1424 1 3 15 5340 3 22 

5 1780 2 5 16 5696 0 22 

6 2136 0 5 17 6052 1 23 

7 2492 0 5 18 6408 1 24 

8 2848 3 8 19 6764 0 24 

9 3204 1 9 20 7120 0 24 

10 3560 2 11 21 7476 2 26 

11 3916 2 13     

 

Table A-1: Phase I system test data  

 

 

Week 

Index 

Exposure 

time 

(cumulative 

system test 

hours) 

Fault 
Cumulative 

fault 

Week 

Index 

Exposure 

time 

(cumulative 

system test 

hours) 

Fault 
Cumulative 

fault 

1 416 3 3 12 4992 2 25 

2 832 1 4 13 5408 5 30 

3 1248 0 4 14 5824 2 32 

4 1664 3 7 15 6240 4 36 

5 2080 2 9 16 6656 1 37 

6 2496 0 9 17 7072 2 39 

7 2912 1 10 18 7488 0 39 

8 3328 3 13 19 7904 0 39 

9 3744 4 17 20 8320 3 42 

10 4160 2 19 21 8736 1 43 

11 4576 4 23     

 

Table A-2: Phase II system test data  

 


