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ABSTRACT 

 

An M
X
/G/1systemis analyzed whereintheservice provider or server which is unreliable can provide service in two 

phases wherein server makesfinite rounds of Bernoulli feedbacks. Here, customers arrive with their arrival rates 

dependent upon server status. Our interest for selecting this model arises from our day-to-dayreal-life situations 

encountered in telecommunication networks, service systems, computer systems etc. where server may face 

breakdown at any stage of service.The prominent performance indices like probability generating function of the 

system sizeand other in steady state are calculated. The ideal values of fewvariables such that the system cost is 

minimized are also obtained. Finally, we provide numerical examples to simulate the model with the real time 

systems. 

 

Keywords: Two phase service, Bernoulli feedback, Batch arrival, Server failure, Cost Optimization. 

 

1. INTRODUCTION 
 

There are many queueing congestion situations in which customers make repeated attempts to complete its service 

This can be visualized in many practical situations in packet switching networks, CCN‟s (computer and 

communication networks) and data communication systems. For example, flow of messages in data transmission, 

flow of information (or packets) between various sources and destinations in Internet systems, flow of calls in a 

telephone call/contact centers or requests for money transfer in ATM machines. This happens because of blocking of 

these systems under limited resources or server capacity. In the previous literature, we find the concept of 

“instantaneous feedback” where customer has to go to the initial point and wait there till the service provider is 

unavailable to render the next service (cf.  Disney et al., 1980) but in this study, instead of taking single feedback, an 

arriving customer may undergo finite rounds ofimmediate Bernoulli feedbacks if they are not satisfied with its 

service.  

 

Most of the times, it happens that the service provider may fail to serve the arriving customers. Once server fails, it 

can be repaired by the repairmen available in the system. This situation is known as „unreliable server‟ or „server 

breakdown‟ in queueing context. For example, if there is some problem in the computer system such as hardware 

failure or software failure, it may be repaired by the repairmen available in the system. Upadhyaya (2014) gave 

performance indices for cluster arrival recurrent queue with Bernoulli feedback. Praveen and Begum (2014) have 

investigated bulk arrival model including retrials under Bernoulli vacationalong with multi-optional services. Singh 

et al. (2016) have scrutinized batch arrival unreliable recurrent model which has an option of additional service. Li 

et al. (2017) considered a negative arrival along with normal arriving customers in an M/G/1 retrial queue. They 

have done the optimization of the system as well. Jain and Meena (2018) have studied a Markov model for machine 

repair problem consisting of failed heterogeneous servers. Ammar et al. (2019) has investigated a M/G/1 retrial 

queue with priority customers along with disasters and working breakdown services. Upadhyaya (2020) have 

derived fruitful performance indices for batch arrival priority system with negative arrivals and breakdown.Yen et 

al. (2020) has analyzed M/G/1 queues with N policy and working failure. Rajadurai et al. (2020) analyzed an 

M
X
/G/1 queue with retrials, preemptive priority and feedback along with balking of the customers due to disasters 

and working breakdowns. 

 

In this paper, we investigate queueing characteristics of a two-phase unreliable M
X
/G/1 queue with countable rounds 

of Bernoulli feedback under arrival rates that are state dependent. The remaining paper is organized as 
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follows.Insection 2, we describe the model by giving suitable assumptions andsymbols. Section 3 is devoted to 

obtain system size distribution of the developed model. The followingresults are then used in section 4, to obtain 

various useful performance measures for the system.Section 5 presented cost analysis of the developed model and it 

also includes some numericalresults. At last, we give remarks for conclusion and scope for future refence of the 

work in section 6. 

 

2. MODEL DESCRIPTION 
 

All customers arrive following the Poisson process with rate depending on the state of service provider as 











 ) service phase second ( SPS duringrepair in or busy  beingserver for        ,

 ) service phase(first  FPS duringrepair in or busy  beingserver for         ,

idle beingserver for         ,

2

1

0







n  

 

We denotebatch size by random variable X, with probability function   1m ;Pr  mcmX and probability 

generating function C(z)= m

m
m zc



1

with 1z .We denote first and second moments of X by c1 and c2, 

respectively, so that c1=E(X) and c2=  2XE .  

 

In the present investigation, serviceis provided in two stages denoted by FES (first essential service)and SPS (second 

phase service). Each unit in the system first optsfor FES and then SPSwhich is optional dependingupon thechoice of 

an arriving customer. After the accomplishment of the first stage,the customer can go for any ofJ( KJ 1 ) 

optional services with probability Jp , otherwise leaves the system with complementary probability Jp1 . The 

complete service (first phase and/or second phase) is provided by the same server. We assumed the customers that 

have completed their first stage service to either feedback instantly with probability
1 or exit straight away with 

complementary probability
11  .The units may enter the queue again for the next r feedback phase by coming into 

the essential phase of service with probability
2 (

2 <
1 ); after finishing their feedback service, they leave the 

system with complimentary probability 
21  .This process is repeated again and again till an arriving customer 

completes m rounds of feedback. The next arriving unit in the queue can enter the system only if the previous 

customer finishes his/her satisfied number of feedbacks. There areK numbers of optional servicesavailable in the 

queueing system.Themodel followsFCFS discipline.The server may fail eitherduring FPS or SPS and is sent 

immediately for the purpose ofrepairby the repairmen available in the system.When server breakdown occurs, the 

customer in the service holds back for the service provider which is repaired to finish off the left over 

service.Service times and repair times are general distributed. We define other notations of the model as follows: 

 

2.1 Notations 
 

)(xB
 

:  Distribution function of service time during essential phase of service. 

)(* SB
 

: Laplace Steiljes transform for the distribution function of service time during 

essential phase service. 

  )0(0


 BBE

 

:  First moment of service time distribution during essential phase service. 

  )0(2

0


 BBE

 

: Second moment of service timedistribution during essential phase of service. 

)(xBJ , (1≤J≤K)
 

: Distribution functions of the service time during J
th 

optional phase of service. 

)(* SBJ , (1≤J≤K)
 

: Laplace Steiljes transforms forthe distribution function of the service time during J
th 

optional phase of service. 

)(xJ , (1≤J≤K)
 

: Hazard rate function for service time during J
th 

optional phase of service. 

  )0(


 

JJ BBE               
: First moment of service time distribution during essential phase of service. 
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(1≤J≤K)
 

  )0(
''*2

JJ BBE 
 

          (1≤J≤K)
 

: Second moment of service time distribution during J
th 

optional phase of service 

)(xD
 

: Distributionfunction of time for repair of the server when it‟s on breakdowns while 

on essential phase of service. 

)(* SD
 

: Laplace Steiljes transform for the distribution function of time for repair of the 

server when it breakdowns while on essential phase of service
 

  )0(
'*

0 DDE 
 

: First moment of time for repair distributionwhen server breakdowns while on 

essential phase of service. 

  )0(
'*2

0


 DDE

 

: Second moment of time for repair distribution when server breakdowns while on 

essential phase of service. 

  )0(* JJ DDE
 

            (1≤J≤K)
 

: First moment of time for repair distribution when server breakdowns while on J
th

 

optional phase of service. 

  )0(*2 
 JJ DDE

 
              (1≤J≤K)

 

: Second moment of repair time distribution when server breakdowns J
th 

during 

optional phase of service. 

 

3. SYSTEM SIZE DISTRIBUTION 
 

Let P (t) showsthe server‟s state at time t, then 
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
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  service. stage optional providing isserver n        whe,2

 service. stage essential providing isserver en         wh,1

idle. beingserver en         wh,0

)(tP

 
 

Let Q (t) be the customers‟ number in the system at time t, K(t) denotes the elapsed service time of a customer 

presently receiving service during FES at time t, )(tLJ denotes the elapsed service time of the unit presently 

receiving J
th

optional service during second stage of service at time t, M (t) denotes the elapsed repair time of a server 

when breakdown during FES and )(tN J denotes the elapsed repair time of a of a server when breakdown during 

SPS. 

Define               

 
   
   
   
   























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4P ,

3P ,

2P ,

1tP ,

0tP ,0

ttN

ttM

ttL

t

t

J

J  

Then {P (t), Q (t), )(t , t≥0} be a continuous time Markov process. We construct the following probability 

functions as follows: 

0,0U = Prob {P (t) = 0, Q (t) = 0} 

dxtxV ni ),(, = Prob {P(t) = 1, Q (t) = n, dxxtKx  )( }; 1-mi0  . 

dxtxU J
ni ),(, = Prob {P (t) =2, Q (t) =n, dxxtLx J  )( }; 1-mi0 K,J1  . 

dxtyxW ni ) , ,(0
, = Prob {P (t) = 3, Q (t) =n, ,)( xtK  dyytMy  )( }; 1-mi0 K,J1  . 

dxtxW J
ni ) y, ,(,  =Prob {P (t) =4, Q (t) =n, ,)( xtLJ  dyytNy J  )( }; 1-mi0 K,J1  . 
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 3.1 Steady State Equations 
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SS dxxxUdxxxUU                                                                        (1)
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   ; 0≤i≤m-1                          (2)
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Now we define boundary conditions as follows: 
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dxxxUdxxxUV J

K

J

J
nm

m

s

K

J

J
J
nssn )()()()()1()0(

1 0

1,1

2

0 0 1

1,1,0   














  ; n≥2                                                         (7) 

1n 1,-mi1 ;)()()0(

0 1

,1,  




 dxxxUqV J
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(8) 

1n 1,-mi0 K,J1 ;)()()0(

0

,,  


dxxxVpU niJ
J
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(9) 

10 , 1 );()0( ,0

0

,  minxVbW nini                                                                                                                (10) 

10 ,K J1  ; 1 ;)()0( ,,  minxUbW J

niJ

J

ni                                                                                        
(11) 

The normalizing condition is given by 
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J
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J
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To obtain the performance indices, via probability generating function (PGF) technique, the partial probability 

generating functionsfor distinct modes of the server are defined as follows:  

 

For 11  mi , KJ1   
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Lemma 1: The marginal pgf for distinct states of the system are given by 
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Proof: Multiplying equations (2)-(11) withappropriate powers of z and then taking summation over „n‟ and 

thereafter performing some algebraic computations we obtain the above results. 

 

Theorem 1: The PGF of average system size is  
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Proof: Summing up all the marginal PGF of distinct states of the server, we obtain the above result. 

 

4. PERFORMANCE MEASURES 

 
     The steady state probabilities for different states of the model are  

 Probability that service provider is idle is given by 
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 Probability that service provider is busy with FES under 0th feedback is obtained using 

 

 
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 Probability that service provider is busy with 0th feedback of SPS can be found using 
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 Probability that the service provider is under repair when breakdown during 0th feedback of FES is  
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 
Probability that theservice provider is under repair when breakdown during ith feedback of FES is 

 

computed as
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 Probability that the service provider is under repair when breakdown during 0th feedback of SPSis found as 
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 Probability that the service provider is under repair when breakdown during ith feedback of SPS is given by 
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 

The time spent by the service provider in complete service during 0th feedback is given by
 

P (FR0) =  1   

 The time spent by the service providerin complete service during ith feedback is given by 

P (FRi) =  1 
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Theorem 2: The average number of customers in the system is given by 
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Proof: Differentiating all marginal generating functions with respect to z and then taking lim z tends to 1,    

          

and after that summing all these, we obtain the above result. 
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5. COST OPTIMIZATION AND SENSITIVITY ANALYSIS 

 
To make the system cost effective, we have designed a cost model for an M

X
/G/1 queue wherein server 

undergoesfinite rounds of Bernoulli feedbacks and arrival rates are assumed to be state dependent. This may be used 

in handling issues related to finance, of many industrial organizations and service systems under technology oriented 

economic constraints. Our main aim is to decide the joint ideal estimations of most delicate parameters p1 and 1 i.e. 

(p1
*
,1

*
) simultaneously to reduce the total system cost. Here,  01 BE and  01 DE .  

 

Table 1: Cost sets for optimal policy 

Cost sets 
1

~
C  2

~
C  3

~
C  4

~
C  

Set 1 $5 $120 $8 $150 

Set 2 $5 $120 $9 $150 

Set 3 $5 $120 $10 $145 

 

All the cost elements related with the cost function are as follows: 

1

~
C :   Cost of holding per unit time for everyunitin the system 

2

~
C     :   Cost per unit time while the server beingactive and is operating 

3

~
C :    Setup cost per busy cycle 

4

~
C :   Startup cost per unit time before initiating the service for doing the preliminary work. 

 

 

Table 2: The optimum values (p1
*
, 

*
) and their minimum cost E[TC

*
] 

Cost Sets (b1, )=(0.04,0.2) (b1, 1)=(0.05,0.25) 

 (p1
*
, 

*
) E[TC

*
] (p1

*
, 1

*
) E[TC

*
] 

Set 1 (0.14, 2) $139.61 (0.14, 2) $139.13 

Set 2 (0.14, 2) $139.77 (0.14, 2) $139.29 

Set 3 (0.14, 2) $139.09 (0.14, 2) $139.62 

 

We try to construct the function for the total cost expected per unit time as follows: 

  0,040,0130,02111

~~
1

~~
)] ,([ UCUcpCUCLCpTCE S    

We try to use a well known heuristic approach “Direct Search Method” to get the joint optimal values (p1
*
, 

* 

)which provide the least expected cost per unit time (cf. Jain and Upadhyaya, 2011). Also, the successive values of 

p1 and  are put in the function defined for distinct cost sets such that one from the many parameters is fixed and 

the other variable varies. This action goes on unless we obtain the least total system cost E[TC(p1, )] say E[TC*]. 

For the same, we opt p1 and  to vary as [0.14, 0.15, 0.16] and [1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8], respectively. This 

activity is described as follows: 

 

Step 1. Set p1= 0.14. Determine 
*
( p1) =min{ 0)],([)]2.0,([0 11111   pTCEpTCE } and 

compute E[TC(p1, 
*
( p1))]. 

Step 2.  Compute 1
*
( p1+0.01) and E[TC(p1+0.01, 1

*
 ( p1+0.01))]. 

Step 3.  If E[TC(p1+0.01, 1
*
 ( p1+0.01))]> E[TC(p1, 1

*
 ( p1)], STOP; the optimal values are (p1

*
, 1

*
)=(p1, 1

*
( p1)). 

Otherwise, GOTO step 2. 

 

In order to make the system cost effective, we are consideringthree sets of cost elements as shown in Table 1. The 

joint optimal values of p1 and 1 and their respective minimum cost are displayed in Table 2. The default parameters 

for tables 1-2 are chosen as c1=0.67; c2=.0.89; =1.5;  q1=qb0=b1=0.04; 

E[B0]=0.8; E[B10.2; E[D0; E[D1. Fig. 1(a-b) is constructed to show variation of essential 
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and optional repair probabilities on average system size for different values of p1. From these figures, we observe 

that system size shows a linear trend for different values of these repair probabilities. 

 

 

        

 
(a)                                                                                     (b) 

Figure 1: Effect of failure rates(a) b0 (b) b1 on average system size. 

6. CONCLUSIONS 

 
This model fits best in telecommunication systems, computer systems, manufacturing system. We find probability 

generating function for the system size and queue length. Also, we find numerical results by using MATLAB. The 

future work in this field includes the concept of set up time taken by both server and repairmen before providing 

service and repair respectively. 
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