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ABSTRACT 

 

We propose a software reliability growth model (SRGM) to estimate the reliability of a large and complicated 

modular system. With the aim of making the fault detection and correction procedures suitable to real-world 

circumstances, the influence of a random field environment (RFE) along with imperfect debugging is considered. 

The software reliability in a field environment typically differs from the reliability prediction made during the 

testing phase and even from all its comparable relevance in other domains. We determine optimal release time 

(ORT)policy based on cost-reliability constraint. The policy aims to minimize the expected total maintenance cost 

by including various costs. The proposed SRGM may provide a valuable tool for software developers to predict the 

reliability of a complex modular system and make informed decisions about ORT. 

 

Keywords: SRGM, Imperfect debugging, Random field environment, Optimal release time.  

 

1. INTRODUCTION 

 

Software has emerged as a fundamental component of modern technology and is utilized in several industries, 

including transportation, banking, and healthcare, etc. With the increasing reliance on software, the need for reliable 

software systems is more crucial than ever before. Consequently, the increased complexity of software systems has 

caused the emergence of software faults and failures during the development of these large software systems. 

Software failures can have disastrous consequences including equipment loss, financial losses, and even human 

fatalities in case of safety-critical systems. Hence, software reliability and its stability are key concerns, leading to 

the development of reliability engineering context. To avoid software failures and ensure high reliability, testers 

perform software testing. During the testing phase, the estimation of software reliability is done using a suitable 

software reliability growth model (SRGM). SRGM allows developers to make predictions about the reliability of 

their software during testing and can even aid them in identifying areas where more testing or debugging may be 

required to enhance the software's quality. SRGMs can also assist developers in estimating the time and materials 

required to reach a desired degree of reliability. 

 

Numerous SRGMs were suggested over the last four decades to assess the software reliability. Software 

development is more than just about the skills and methods used by the software developers. Even the most skilled 

software engineers cannot produce software products that are fully error-free due to the complex concepts and 

logical frameworks of software development. Despite comprehensive testing, software errors can still occur, and it is 

critical to spot and correct them as soon as possible to prevent adverse effects. Debugging activity helps to identify 

the cause of a software failure, determining the problematic component of the program, and carrying out the 

necessary actions to correct the software fault. In a perfect debugging process, all faults in a software system are 

eliminated. In case of imperfect debugging, some faults may remain undetected, and the number of faults may 

increase or decrease in relation to the debugging time as a result of new fault introduction. Many of the earlier 

NHPP based SRGMs assume the perfect debugging process (cf. Jelinski and Moranda; 1972). Goel and Okumoto 

(1979) suggested a reliability growth model for perfect debugging environment by following the assumption that 

software faults were immediately removed after detection, resulting in simulations that were very close to real 

software reliability engineering. However, due to the human details involved in debugging a software program, 

perfect debugging is an unrealistic assumption. Goel (1985) was the first to acknowledge the concept of imperfect 

debugging. Jones (1996) discovered that in most cases, fault removal efficiency is less than 100%. The fault removal 
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factor (FRF) reveals a major part to get improved software reliability by addressing the challenge of failure 

incidence (cf. Jain et al.; 2012). Zhu et al. (2016) proposed a SRGM with a time-dependent fault detection and 

removal rates. A comparative analysis between the SRGM performances for perfect and imperfect debugging has 

given by Gupta et al. (2021). Other recent and significant advancements of SRGMs with imperfect debugging 

environment that have shown excellent performance and superior to other models were studied by Chatterjee et al. 

(2021) and Zhang et al. (2022). 

 

The software in field environment and in testing environment may be considered as identical reason being both 

exhibit the same failure-occurrence behavior. Nevertheless, this supposition may not be correct, since the software is 

utilized in a wide diversity of field of applications when it is launched whereas the in-house testing environment is a 

controlled setting with much less variance than the field environment. To characterize this difference based on 

conditions of usage in different environment, a specific proportional constant of the environmental factor is 

introduced. The first researchers to investigate this impact of the field environment factor was Teng and Pham 

(2004). Some more notable contributions towards estimation of software reliability in random field environment are 

due to Inoue and Yamada (2011), Sgarbossa and Pham (2010), Zhao et al. (2006), Pham (2014), Chang et al. (2014), 

Li and Pham (2017), Pradhan et al. (2020), Mishra et al. (2023) and many others. 

 

In view of management of software industry, the significant usage of SRGM is to identify the ideal point of 

deliverance. The testing methods used, and the time allotted for testing determine how well a software system 

performs. Greater testing time results in software that is more reliable, but testing time also costs more money. As a 

result, several researchers have developed models for software release time. Many models prioritize either cost or 

reliability when determining the moment at which software delivery should begin. Pachauri et al. (2013) proposed 

an optimal software cost model with cost-reliability criteria under fuzzy concept.  In the literature, the proportion of 

delay in removal of detected faults at any time has been introduced as delay effect factor. The delay in software 

releasing is not ideal for manufacturers as well as for customers. Gupta et al. (2019) proposed an optimal cost model 

considering delay effect. Anand (2020) proposed a cost optimization model that took two-dimensional delayed S-

shaped SRGM into consideration. Verma et al. (2022) considered error generation, and time-dependent fault 

reduction factor to propose an optimal release policy. In a more recent proposal, an optimal release policy 

considering the exponential testing coverage function was proposed by Kumar et al. (2023). 

 

In the real time software system, the failure pattern depends on the specific software module. There have been some 

studies on the reliability estimation of software systems using modules or components. The quantitative evaluation 

of component-based software systems was introduced by Popstojanova and Trivedi (2001). By merging the program 

architecture with the component and interface failure patterns, they analytically calculated the software reliability. 

The SRGM should be designed in such a way that it considers the behavior of all the software modules since the 

reliability of the entire piece of software depends on the reliability of each individual module/component. In this 

context, Jain and Gupta (2011) obtained optimum release time for modular software system incorporating testing 

effort function. The model took into consideration the faults of various kinds which are different as their severity 

levels. Furthermore in 2018, they suggested a modular software system reliability considering fault reduction factor.  

In the proposed study, we build a module-based software reliability growth model assuming users use the software 

system in an uncertain environment. We study both fault detections and corrections in imperfect debugging along a 

random field environment. The rest of paper is structured as follows. Section 2 outlines the modular SRGM in a 

random field environment. Section 3 discusses the optimal release time problem, incorporating maintenance cost 

analysis. The model simulation is done in section 4 to validate the analytical findings. The paper concludes in 

section 5.   

 

2. THE MODULAR SRGM 
 

The proposed model focuses on a software system comprising N modules, each with distinct testing requirements 

and failure characteristics. Our approach utilizes a SRGM that assumes varying initial fault counts for each module.  

Assumptions:  

(i) The fault detection and correction phenomena are governed by non-homogeneous Poisson process. 

(ii) Whenever a software error is detected, immediate action is taken to address it. 

(iii) The fault detection rate 𝑏𝑛(𝑡) is multiplied by 𝜂, anon-negative random variable which is consideredto 

reveal uncertainty of operating environment, where 𝑛 = 1,2,3, … . , 𝑁. 
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(iv) Each identified fault in the software is considered independent of the others. 

(v) The expected number of detected faults is proportional to the number of remaining undetected faults 

and the proportionality follows an inflection S-shaped time dependent function. 

(vi) The expected number of corrected faults is proportional to the average number of faults that are 

identified but still not fixed and this proportionality alsofollows an inflection S-shaped time dependent 

function. 

(vii) The total fault content function is assumed as linearly time dependent function as case of imperfect 

debugging wherein new faults may be introduced. 

 

Notations:  

𝑚𝑑,𝑛(𝑡)/𝑚𝑐,𝑛(𝑡): Number of detected/corrected faults in 𝑛𝑡ℎ modulein (0, 𝑡)time interval. 

 𝑏𝑛(𝑡): Fault detection/correction rate in the 𝑛𝑡ℎmoduleat any time 𝑡. 
𝛼: Fault introduction rate in imperfect debugging environment, where 0 ≤ 𝛼 ≤ 1. 
𝑝𝑛: Probability of successful removal of faults from the 𝑛𝑡ℎmodule;0 ≤  𝑝𝑛 ≤  1 𝑎𝑛𝑑𝛼 ≤ 𝑝𝑛 . 
𝑎𝑛(𝑡): Fault content function in the 𝑛𝑡ℎ moduleat any time 𝑡. 
𝑔(𝜂): Probability density functionof gamma distribution. 

𝐺(𝑥):  Laplace-transform of gamma distribution. 

𝛽: Shape parameter of the learning curve. 

𝜆/𝜃: Scale/Shape parameter of gamma distribution function of random field environment (RFE), 𝜂. 

 

Governing Equations: 

 

With the aforementioned assumptions in mind, the following differential equations can be used to represent the 

mean value function (MVF) for number of fault detections and corrections in𝑛𝑡ℎ(𝑛 = 1, 2, …𝑁) module under the 

NHPP model with random field environment as given below: 

 𝑑

𝑑𝑡
𝑚𝑑,𝑛(𝑡) = 𝜂𝑏𝑛(𝑡)[𝑎𝑛(𝑡) − 𝑝𝑛𝑚𝑑,𝑛(𝑡)] 

 (1) 

 𝑑

𝑑𝑡
𝑚𝑐,𝑛(𝑡) = 𝑝𝑛𝑏𝑛(𝑡)[𝑎𝑛(𝑡) − 𝑚𝑐,𝑛(𝑡)] 

 (2) 

where,  

 
𝑏𝑛(𝑡) =

𝑏𝑛
1 + 𝛽𝑒−𝑏𝑛𝑡

 ,        𝑏𝑛 > 0, 0 < 𝛽 < 1 
(3) 

 𝑑

𝑑𝑡
𝑎𝑛(𝑡) = 𝛼

𝑑

𝑑𝑡
𝑚𝑑,𝑛(𝑡) 

(4) 

along with initial settings𝑚𝑑,𝑛(0) = 0,𝑚𝑐,𝑛(0) = 0, and𝑎𝑛(0) = 𝑎. The random field environmentwith T, the time 

of time of software release is shown in figure 1 and 𝜂  can be defined as; 
 

𝜂 = {
1,                                     𝑡 ≤   𝑇
𝑟. 𝑣.  𝑤𝑖𝑡ℎ 𝑝𝑑𝑓 𝑔(𝜂), 𝑡 ≥  𝑇

 

 

 
Figure 1. Random field environment 

 

2.1: FDM (Fault Detection Model) 

We solve the equation (1) for testing and operational phases under the initial settings and yield MVF for the 

detection process in 𝑛𝑡ℎmodule; 
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(i). In-house testing phase (𝑡 ≤ 𝑇) 
 

𝑚𝑑,𝑛(𝑡) =
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − 𝑒−∫ (𝑝𝑛−𝛼)𝑏𝑛(𝜏)𝑑𝜏

𝑡

0 ] (5) 

 
   

(ii). Field operationalphase (𝑡 ≥ 𝑇) 
 

𝑚𝑑,𝑛(𝑡) =
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − 𝑒−∫ (𝑝𝑛−𝛼)

𝑇

0
𝑏𝑛(𝜏)𝑑𝜏𝐺((𝑝𝑛 − 𝛼)∫ 𝑏𝑛(𝜏)𝑑𝜏)

𝑡

𝑇

] 
(6) 

 

 
On solving equations (5-6) and using equation (3), the MVF for the detection process in 𝑛𝑡ℎmodule are given as 

follows: 

 

 
𝑚𝑑,𝑛(𝑡) =

𝑎𝑛

(𝑝𝑛−𝛼)
[1 − (

1+𝛽

𝛽+𝑒𝑏𝑛𝑡
)
(𝑝𝑛−𝛼)

];   for (𝑡 ≤ 𝑇)                                            
(7) 

 

 

 

𝑚𝑑,𝑛(𝑡) =
𝑎𝑛

(𝑝𝑛−𝛼)
[1 − (

1+𝛽

𝛽+𝑒𝑏𝑛𝑇
)
(𝑝𝑛−𝛼)

(
𝜆

𝜆+(𝑝𝑛−𝛼) log(
𝛽+𝑒𝑏𝑛𝑡

𝛽+𝑒𝑏𝑛𝑇
)
)

𝜃

] ;                                      for              (8) 

 

The total mean number of faults detected for both the testing and operational phase from each of the modules can be 

determined as  

 

𝑚𝑑(𝑡) = ∑𝑚𝑑,𝑛(𝑡)

𝑁

𝑛=1

 

 

 

 

 

 

 

=

{
  
 

  
 ∑

𝑎𝑛
(𝑝𝑛 − 𝛼)

[1 − (
1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑡
)
(𝑝𝑛−𝛼)

]

𝑁

𝑛=1

                                                 , 𝑡 ≤ 𝑇

∑
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑇
)

(𝑝𝑛−𝛼)

(
𝜆

𝜆 + (𝑝𝑛 − 𝛼) log (
𝛽+𝑒𝑏𝑛𝑡

𝛽+𝑒𝑏𝑛𝑇
)
)

𝛳

]

𝑁

𝑛=1

   , 𝑡 ≥ 𝑇

 

 

 

 

 

(9) 

 

2.2: FCM (Fault Correction Model) 

 

From equations (1) and (2), we obtain 

 𝑚𝑐,𝑛(𝑡) = 𝑝𝑛𝑚𝑑,𝑛(𝑡) (10) 

Now, the MVF for the correction process in𝑛𝑡ℎmodule is given as follows: 

(i). In-house testing phase (𝑡 ≤ 𝑇) 
 

𝑚𝑐,𝑛(𝑡) =
𝑝𝑛𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑡
)
(𝑝𝑛−𝛼)

] 
(11) 

(ii). Field operationalphase (𝑡 ≥ 𝑇) 
 

𝑚𝑐,𝑛(𝑡) =
𝑝𝑛𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑇
)

(𝑝𝑛−𝛼)

(
𝜆

𝜆 + (𝑝𝑛 − 𝛼) log (
𝛽+𝑒𝑏𝑛𝑡

𝛽+𝑒𝑏𝑛𝑇
)
)

𝛳

] 

 

 

(12) 

Therefore, the total mean number of faults corrected for both the testing and operational phase from each of the 

modules can be evaluated as follows:  

                  
                                                                  𝑚𝑐(𝑡) = ∑𝑚𝑐,𝑛(𝑡)

𝑁

𝑛=1
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         =

{
  
 

  
 ∑

𝑝𝑛𝑎𝑛
(𝑝𝑛 − 𝛼)

[1 − (
1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑡
)
(𝑝𝑛−𝛼)

]

𝑁

𝑛=1

                                                  , 𝑡 ≤ 𝑇 

∑
𝑝𝑛𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

1 + 𝛽

𝛽 + 𝑒𝑏𝑛𝑇
)

(𝑝𝑛−𝛼)

(
𝜆

𝜆 + (𝑝𝑛 − 𝛼) log (
𝛽+𝑒𝑏𝑛𝑡

𝛽+𝑒𝑏𝑛𝑇
)
)

𝛳

]

𝑁

𝑛=1

  , 𝑡 ≥ 𝑇

 

 

 

(13) 

 

3. OPTIMAL RELEASE TIME POLICY 
 

The testing and maintenance phases are crucial for ensuring the quality of a software system. Delays in releasing 

software can result in financial losses, and releasing software with faults can raise maintenance costs throughout the 

operating phase. The software must be reliable when it is delivered to clients with minimum cost. Some faults are 

not always readily recognized during human testing, hence automated techniques are used to find these faults and 

reach a specified quality level in a given period while controlling testing costs. 

We find the optimumlaunching time of software at a minimum maintenance cost with desired and satisfactory level 

of software reliability. To achieve this, we propose a cost model that considers va4ious costs such as testing cost 

(𝐶3 ), debuggingfault correction costs before/after (𝐶1/𝐶2)releasing and the risk cost (𝐶4 )on software module 

failure. 

 

The reliability function for the time interval (𝑇, 𝑇 + 𝑥]is given as; 

 

 𝑅(𝑥/𝑇) = 𝑒−[𝑚𝑑(𝑇+𝑥)−𝑚𝑑(𝑇)] (14) 

   
The total expected software maintenance cost function is constructed as: 

 

 𝐸𝐶(𝑇) = 𝐶1𝑚𝑑(𝑇) + 𝐶2[𝑚𝑑(𝑇𝑐) − 𝑚𝑑(𝑇)] + 𝐶3𝑇 + 𝐶4[1 − 𝑅(𝑥/𝑇)] (15) 
   
where, 𝑇𝑐is software life cycle length. 

Now, using equation (9) and equation (13) in equation (15) respectively, we get the total expected maintenance cost 

as; 

(i). In-house testing phase (𝑡 ≤ 𝑇) 
 

 
𝐸1𝐶(𝑇) = (𝐶1 − 𝐶2)∑

𝑎𝑛
(𝑝𝑛 − 𝛼)

[1 − (
𝛽 + 1

𝛽 + 𝑒𝑏𝑛𝑇
)
(𝑝𝑛−𝛼)

]

𝑁

𝑛=1

+ 𝐶2∑
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

𝛽 + 1

𝛽 + 𝑒𝑏𝑛𝑇𝑐
)
(𝑝𝑛−𝛼)

] + 𝐶3𝑇

𝑁

𝑛=1

+ 𝐶4 [1 − 𝑒
−[∑

𝑎𝑛
(𝑝𝑛−𝛼)

[1−(
1+𝛽

𝛽+𝑒(𝑏𝑛)(𝑇+𝑥)
)
(𝑝𝑛−𝛼)

−∑
𝑎𝑛

(𝑝𝑛−𝛼)
[1−(

1+𝛽

𝛽+𝑒𝑏𝑛𝑇
)
(𝑝𝑛−𝛼)

]𝑁
𝑛=1 ]𝑁

𝑛=1 ]
] 

 

                                                                                                                                                                      (16) 

(ii). Field operationalphase (𝑡 ≥ 𝑇) 
 

    𝐸2𝐶(𝑇) = (𝐶1 − 𝐶2)∑
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

𝛽 + 1

𝛽 + 𝑒𝑏𝑛𝑇
)
(𝑝𝑛−𝛼)

]

𝑁

𝑛=1

+ 𝐶2∑
𝑎𝑛

(𝑝𝑛 − 𝛼)
[1 − (

𝛽 + 1

𝛽 + 𝑒𝑏𝑛𝑇𝑐
)
(𝑝𝑛−𝛼)

(
𝜆

𝜆 + (𝑝𝑛 − 𝛼) log (
𝛽+𝑒𝑏𝑛𝑇𝑐

𝛽+𝑒𝑏𝑛𝑇
)
)

𝛳

] + 𝐶3𝑇

𝑁

𝑛=1

+ 𝐶4 [1 − 𝑒
−[∑

𝑎𝑛
(𝑝𝑛−𝛼)

[1−(
1+𝛽

𝛽+𝑒(𝑏𝑛)(𝑇+𝑥)
)
(𝑝𝑛−𝛼)

−∑
𝑎𝑛

(𝑝𝑛−𝛼)
[1−(

1+𝛽

𝛽+𝑒𝑏𝑛𝑇
)
(𝑝𝑛−𝛼)

]𝑁
𝑛=1 ]𝑁

𝑛=1 ]
] 

 

 

 

 

 

(17) 
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4. NUMERICAL SIMULATION 

 
A numerical illustration is presented to show the precision of the analytical results derived for the three modular 

software systemsto observe the effect of different factors on the anticipated maintenance cost during testing phase 

and software reliability.To determine ORT with a specified level of reliability, the parameters are set as follows: 

𝑥 = 0.05 , 𝛼 = 0.01, 𝛽 = 0.1, 𝜆 = 0.61, 𝛳 = 1, 𝑇𝑐 = 30, 𝑝1 = 0.1,   𝑝2 = 0.2, 𝑝3 = 0.3, (𝑎1, 𝑎2, 𝑎3) =
(10, 50, 50), (𝑏1, 𝑏2, 𝑏3) = (0.01, 0.2, 0.2). Here, we have parameters 𝑝1, 𝑝2  and 𝑝3  denoting the probability of 

successful removalof faults from 1𝑠𝑡  , 2𝑛𝑑and3𝑟𝑑 software module respectively; 𝑎1, 𝑎2  and 𝑎3  denoteinitial faults 

presented in 1𝑠𝑡  , 2𝑛𝑑and3𝑟𝑑software module respectively; and 𝑏1, 𝑏2 and 𝑏3 denote the fault detection/correction 

rate in 1𝑠𝑡  , 2𝑛𝑑and3𝑟𝑑software module respectively. The numerical results are summarized in figures 2 - 7 and in 

table 1.The following are the cost parameters selected for the various sets: 
Set I:    C1=320$; C2=400$; C3=50$; C4=3000$. 

Set II:   C1=330$; C2=400$; C3=50$; C4=3000$. 

Set III:  C1=320$; C2=415$; C3=50$; C4=3000$. 

Set IV:  C1=320$; C2=400$; C3=55$; C4=3000$. 

Set V:   C1=320$; C2=400$; C3=50$; C4=4000$. 

Figure 2(i-iii) and figure 3(i-iii) depict MVF of testing and operational phase on increasing time by varying the 

parameters 𝑝1 , 𝑝2, 𝑝3 respectively. We see that MVF for both testing and field operation phases increases rapidly 

with increase in time t in the beginning and then attains almost constant value with further increase in t. Figures 2(i) 

and 3(i) reflect the effect of probability𝑝1on MVF of testing and operational phases. It is noticed that MVF for both 

the cases decreases with respect to 𝑝1. In this context, the MVF for both phases decrease on increasing parameter 𝑝2 

which could be observed in figures 2(ii) and 3(ii).  In figures 2(iii) and 3(iii), a decreasing pattern of MVF can be 

seen on increasing probability𝑝3; however, the impact of 𝑝3 in operational phase is less significant in comparison to 

the impact of 𝑝1 and 𝑝2. 

 

Figures 4-7 reveal the impacts of parameters𝑎1 , 𝑎2 , 𝑏2  and 𝑏3  on R(x|T) and maintenance costof testing phase 

(E1CT) by varying testing time (T). The figures 4(i), 5(i), 6(i) and 7(i) demonstrate a sharp increase in software 

reliability around initial testing time span[0,80], then it attains its desired level of reliability. In the figures 4(ii), 

5(ii), 6(ii) and 7(ii), we observe that E1CT steadily decreases as testing time increases until it reaches its 

optimumand after that, it significantly growths and becomes asymptotically constant. 

 

Figures 4(i-ii) illustrate the impact of reliability and expected maintenance cost in the testing phase (E1CT) with 

respect to testing time, respectively by varying the parameter 𝑎1. We observe the effect of𝑎1 on R(x|T) in figure 4(i) 

which seems negligible till approximately 𝑇 = 60, after which the reliability decreases on further increasing 𝑎1. It is 

entirely normal for reliability to automatically decline as there are more faults. In figure 4(ii), E1CT increases on 

increasing 𝑎1, however, the impact of 𝑎1 on the cost appears to be relatively less significant.  

 

In figure 5(i), R(x|T) decreases on increasing 𝑎2 initially till about 𝑇 = 100 after which 𝑎2 has minimum effect on 

R(x|T) and converge nearly to the same value. E1CT increases with the increase in𝑎2 prominently which could be 

seen in figure 5(ii). 

 

In figures 6(i) and 7(i), it appears that the fault detection rate in module 2 (𝑏2)and module 3(𝑏3), has relatively 

minor impact on R(x|T). But, on increasing 𝑏2 and 𝑏3, the overall maintenance cost increases significantly which 

can be visualized in figures 6(ii) and 7(ii).  

A summary of the calculated ORT (T*) along with minimal cost (E1CT*) and the reliability attained(R(x/T)*) is 

provided in table 1.  

Table 1. Optimal release time for their respective E1CT* and R(x/T)* 

Cost Set T* E1CT* (in thousands) R(x/T)* 

I 83.1 89.84977084 0.97102057 

II 80.5 102.7174418 0.96831494 

III 88.6 96.76123521 0.97588308 

IV 81.3 98.83318178 0.96917814 

V 84.5 98.44892177 0.97236315 
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Figure 2: MVF of testing phase (𝑡 ≤ 𝑇)for 

(i) p1 (ii) p2 (iii) p3  

 

Figure 3: MVF of operational phase 

(𝑡 ≥ 𝑇)for (i) p1 (ii) p2 (iii)p3 
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Figure 4: Reliability and expected total maintenance cost vs testing time by varying a1 

 

Figure 5: Reliability and expected total maintenance cost vs testing time by varying a2 
 

Figure 6: Reliability and expected total maintenance cost vs testing time by varying b2 
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       7(i)                                                                          7(ii) 

 

 

 

 

Due to the complexity of the mathematical derivations, the numerical experiment presented in this study takes into 

account the scenario of two modules. The findings, even with this constrained scenario, have significant 

implications. The following inferences can be made in light of the numerical experiment's findings: 

• As the probability of fault removal from the software module increases, there is a decrease in the number of 

detected faults for both in-house testing and the field operational phases. 

• The total maintenance costs can be decreased by lowering the initial number of faults for the three modular 

software systems, whereas a rise in the fault detections leads to an earlier attainment of optimality at a lower 

testing time. 

• A reduction in the values of 𝑎1 and 𝑎2 yields an improvement in software reliability. 

• The impact of fault detection rates of modules 2 and 3 on the reliability is insignificant, but they result in 

increased maintenance costs. 

 

5. CONCLUSIONS 

 
In the present investigation, we have developed FDM & FCM models for module based SRGM that exhibits the 

ORT in a random field environment, assuming the RFE to be a gamma distribution function. Moreover, we have 

considered fault detection and correction rate to be inflection S-shaped function. To show the numerical analysis, a 

three modular system was chosen, and we have performed a numerical simulation using MATLAB to verify the 

analytical results. The suggested release times for testing, software reliability can be used to quickly spot any 

potential faults in the implementation and design of the software, allowing for their correction prior to release and 

guaranteeing that the software satisfies its reliability requirements at the lowest possible cost. This SRGM could 

prove to be an invaluable tool for software designers and system analysts to forecast the reliability of a complex 

modular software and arrive at knowledgeable determination about the optimal release time. 
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