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ABSTRACT 

 
In this paper, we analyze closed two node queueing network with preemptive different priority disciplines at both 

nodes. The service times follow negative exponential distribution for both low and high priority customers. The 

governing equations of the model are provided in section 3. The equilibrium distribution is obtained for both 

preemptive different and preemptive repeat identical priority disciplines by assuming state dependent rates in 

sections 4 and 5. The results for preemptive resume discipline for both state dependent and constant rates are also 

obtained. In section 6, we deduce some special cases. The steady state probability vector is derived by implementing 

matrix-geometric approach in section 7. In section 8, the applicability of preemptive priority in practical life 

situations is highlighted. 

 

Keywords : Two node queueing network, preemptive priority, preemptive repeat identical priority, steady state   

probability vector, metric-geometric approach. 

 

1. INTRODUCTION 
 

Service priorities have direct impact on the service performance and capacity utilization of the operation of almost 

all the manufacturing/service system. In particular, priority is probably used to allocate limited production capacity 

among jobs with different needs and willingness to pay. The most general situation in priority disciplines in 

preemptive priority in which the job with highest priority are allowed to enter service immediately suspending the 

service of job with lower priority, which is already in service. According to preemptive repeat different discipline, 

the preempted unit on its re-entry requires a random service time independent of past preemptions and wasted 

service time. The queueing network is frequently used to model a computer system which consists of a central 

processing unit (CPU) and an input/output (I/O) device. The computer system processes both interactive (high 

priority) and batch (low priority) jobs. 

 

2. RELATED REVIEW 
 

Queueing models with priority have drawn the attention of several research workers due to its applications in many 

congestion situations encountered in production, manufacturing, distribution systems, etc. Sivasamy (1986) 

discussed a queueing model with single server facility in which the units having preemptive priority are served by 

using bulk service rule. Li et al. (1989) obtained Laplace-Stieltjes transform of the queue size distribution and the 

waiting time distributions of a stationary process for a priority queueing model of a production system. Katayama 

(1992) derived queue-length generating functions and Laplace - Stieltjes transforms of waiting time distributions for 

two class priority queue. 

 

Wagner (1998) derived the steady state distributions immediately after arrival instants of the different priority 

classes by using matrix geometric methods for a non-preemptive head-of-the line multi-server multi-queue priority 

model with finite buffer capacity for each priority class. Drekic and Stanford (2000) determined the thresholds that 

optimize performance measures such as overall average sojourn time etc. for single-server priority queueing model 

with preemptive resume and preemptive repeat service disciplines. Chen and Ye (2001) established a new sufficient 

condition for the existence of the diffusion approximation for multi-class queueing  networks under preemptive 
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resume priority service discipline. Bitran and Caldentey (2002) presented a performance analysis of a 2-dimensional 

preemptive priority queueing system with state dependent arrivals. 

 

Several researchers have provided analysis of various queueing models by using matrix geometric method. Neuts 

(1981) provided systematic and detailed infrastructure about matrix analytic and matrix geometric method of various 

stochastic models in his textbook. Lucantoni and Ramaswami (1985) analyzed phase type queueing models and 

provided algorithms for solving the non-linear matrix equations. Buzacott and Kostelski (1987) presented matrix 

geometric and recursive algorithm for a two stage unreliable flow line. Sengupta (1990) provided phase type 

representation for matrix-geometric solution. Krishna Reddy et al. (1993) obtained steady state probability vectors 

of the number of customers in the queue, the stability condition and mean queue length of customers by using the 

matrix geometric method for a multi-server non-preemptive priority queueing system. Jayaraman et al. (1994) 

obtained steady-state probability vector of the number of customers in the queue and the stability condition by using 

a matrix geometric algorithm approach for a general bulk service queue. Haverkort and Ost (1997) provided 

comparison between spectral expansion  and matrix-geometric method for steady state analysis of Petri nets. Akar et 

al. (1998) approximated matrix-geometric solutions for M/G/1 type markov chains. Gomez (2002) investigated 

tandem queues with blocking and repeated attempts by implementing matrix-geometric approximation. Grey et al. 

(2002) analyzed queueing  models with backup servers and services breakdowns. They implemented matrix-

geometric approach to determine the queue distribution. Choi et al. (2003) derived matrix-geometric solution for 

nested quasi birth-death chains.  Harchol-Balter et al. (2005) made a significant step in the analysis of the general 

case of a priority multi-service queue by considering servers that combine both non-exponential service times and 

non-identical service rates over all the classes. Boltch et la. (2006) discussed various aspects of queueing systems of 

multi-priority queues. Gupta et al. (2007) derived the accurate approximate analysis of a queue with multiple servers 

and general service times without priorities. Zeltyn et al. (2007) derived waiting and sojourn times in a multi-service 

queue with mixed priorities. Ellens et al. (2012) discussed about performance of cloud computing centres with 

multiple priority queues. Lin et al. (2014) estimated the waiting time of multi-priority emergency patients with 

downstream blocking. Wang et al. (2015) discussed the results about M/MC queue with two priority classes. 

Hanbali et al. (2015) approximated the waiting time distribution in M/Ph/C priority queue. Ammar and Rajadurai 

(2019) investigated the impact of disaster on the retrial queueing system by including the features of the preemptive 

priority and working breakdown server. 

 

3. THE MODEL AND GOVERNING EQUATIONS 
 

We consider a closed queueing  networks with preemptive priority at both left and right nodes. We present the 

analytical results for preemptive different, preemptive repeat identical and preemptive resume disciplines for two 

node closed queueing network. 

The assumptions related to queueing network are given as follows. 

➢ The system consists of N high and M low priority customers. The customers may neither join nor leave the 

network. 

➢ The complete description of the state of the system is given by (n,m) where n and m demote the number of 

high and low priority customers situated at the left node. 

➢ The service time for high and low priority customers is distributed negative exponentially with parameters 

i(n,m) and i(n,m) respectively. 

➢ pi is the probability that the customer is in state i and q (i, j) is rate of moving from state i to state j. 

➢ pi,j be the equilibrium distribution of the system when there are i high and j low priority customers. 

➢ High priority customers have preemptive different priority discipline over low priority customers at each 

node. 

➢ The system is cyclic, i.e. the customers pass to the other queue immediately upon completion of service. 

The steady state equations governing the model are as follows: 

 

( ) 01011102200 =−−+  ppp                   (1) 

( ) ( ) ( ) 1,...,2,1;02011012120 −==−−++ −+ Nippp iii       (2) 

( ) ( ) 0201210 =−+ −  NN pp          (3) 

https://www.semanticscholar.org/author/S.-I.-Ammar/2230604
https://www.semanticscholar.org/author/P.-Rajadurai/49683991
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( ) 011120010222101 =−−−++  pppp                        (4) 

( ) ( ) ( ) ( ) )1,...,2,1,1,...,2,1(0212111221 −=−==−−−++ −−+ MjNipppp jijijiij   

               (5) 

( ) ( ) ( ) 1,....,2,1;0212121 −==−−+ −− Mjppp jNjNjN                        (6) 

( ) ( ) 021011120 =−−+ −  MMM ppp                          (7) 

( ) ( ) ( ) ( ) 021211121 =−−−+ −−+  MiMiMiMi pppp           (8) 

( ) ( ) ( ) 021211 =−+ −−  MNMNMN ppp             (9) 

 

4. THE MODEL WITH PREEMPTIVE DIFFERENT PRIORITY DISCIPLINE 
 

According to preemptive different discipline, a random service time independent of past preemptions and wasted 

service time is required for the preempted customer on its reentry. The state transition rate diagram for two node 

preemptive different priority system is shown in figure 1. 

 

 
 

Figure 1: State transition diagram for two node preemptive different priority system. 

 

  

The transition rates are independent of the system state, i.e. ( ) ( ) .,,,, mnmnmn iiii ==    We derive global 

balance equations for the queueing network. By using these equations, we obtain second order homogeneous 

recurrence relations by which the solution is obtained. 

 

For deriving the balance equations, we equate the flux into any set S by the flux out of the set. 
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i.e. ( ) ( )ijqpjiqp j

SiSj

i

SjSi

,,

11




=                  (10) 

 

I. The Equations for Cut 1 

 

 We obtain global balance equations corresponding to cut 1 with the help of state transition rate diagram 

shown in figure 1. 

Let us consider that set ( ) NnimiS = 0;, . Then 

( ) ( )Mmmmnmmmn pppp  −+=−+ + 11 12,01,101,02,                               (11) 

Education (11) can be rewritten as 

( ) ( ) Mmmmmmnmn pppp  −−−=−+ 11 2,00,012,1,1                                (12) 

where ij is the kronecker delta. 

By using recursive method, the solution of equations (1-9) is given by 
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 For complete solution for pn,m, we must have a relationship between p0,m and p0,2m. 

 

II. The Equations for Cut 2 

 

 To obtain such relationship, we derive balance equation corresponding to another cut 2. 

 Let us consider set ( )  1,......,1,00,0,, −== MmmjNijiS . Then 2,12,0  mNm pp =   

                                                                     (14) 

Using equation (13), we get the value of pN,m as 
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By putting the value of pN,m in equation (5), we obtain the result for p0,2m as 
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where ( )
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The complete solution for pn,m is obtained by substituting the value of p0,2m in equation (13) as 

 



Global Journal of Modeling and Intelligent Computing (GJMIC)     ISSN: 2767-1917, Vol. 2, No. 1, January 2022 

32 

 

( )
( )





























































−































−











−





















−











−











+






















−−









+










=

mM

NN

N

m
mm

n

mmn
B

ppp








































1

1

1

1

1
1

11

1

2

1

2

1

2

1

2

1

2

1

2

1

2

,0
1

1
,0

1

2
,0,  

              (18) 

The normalizing equation 1,
00

=
==

mn

M

m

N

n

p  is used to obtain P0,0. 

 

4.1 Preemptive Different Discipline Model with State Dependent Rates 

 

Let the service times for high and low priority customers be distributed negative exponentially with parameters 

i(n,m) and i(n,m) respectively. In this case, the equilibrium distribution  MmNnp mn  0,0,  is 

obtained by using product form solution. Thus, 

( )jKAp mm =,0                                     (19) 

where ( ) ( ) ( )0,20,10,1 10,220,120,1  pppAm −+= . 
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5. PREEMPTIVE REPEAT IDENTICAL DISCIPLINE MODEL 

 
The equilibrium distribution for the system with preemptive repeat identical discipline at both nodes is obtained by 

deriving global balance equations in the system. 

 

According to preemptive repeat identical discipline, the preempted customer requires the same amount of service 

after reentry as it required on its earlier entry. 

Let us consider set ( ) Nnimi = 0;,  

The balance equation in the system is given by 

 

( ) ( )mMmmnmmmn pppp  −+=−+ + 11 1,01,101,02,                         (21) 

 

The above equation can be rewritten as 

 

( ) ( ) Mmmmmmnmn pppp ,,00,012,1,1 11  −−−=−+                (22) 

 

where ij the kronecker delta. 

By using recursive solution technique, we obtain the equilibrium distribution mnp ,  as follows: 
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and 
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6. SPECIAL CASES 
 

Case 1 : Preemptive Resume Discipline and Constant Rates 

 

 In case of preemptive resume discipline at both nodes of the system, the equilibrium distribution pn,m is 

given by 
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Case 2 : Preemptive Resume Discipline and State Dependent Rates 

 

 If the system follows preemptive resume discipline at both nodes of the system and the service times for 

high and low priority customers are distributed negative exponentially with state dependent parameters 

( )mni , and ( )mni ,  respectively, then the equilibrium distribution  MmNnp mn  0,0,  is given by 
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0,0p  can be determined by using normalizing condition. 

 

7. STEADY STATE PROBABILITY VECTOR : MATRIX GEOMETRIC 

APPROACH 

 
Consider two node-closed network with preemptive different priority disciplines at both nodes (left and right nodes). 

The steady state process under consideration can be formulated as a continuous time Markov Chain with state space 

( ) MmNnmn  0,0;,  where n denotes high priority customers and m represents low priority customers. 

 

The infinitesimal generator Q of the continuous time Markov chain is given by the tridiagonal matrix in which all 

the blocks may also be in matrix form as given below. 
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where the matrices 121000 ,,,, AAAAB  are given as follows 

( ) ( )11212

12122

12122

12122

122

00

................................

................................

0

++





























+

++

++

++

+

=

NN

B











 

\

( ) ( )111

1

1

1

0
............

............

++


























=

NN

A









 

 



Global Journal of Modeling and Intelligent Computing (GJMIC)     ISSN: 2767-1917, Vol. 2, No. 1, January 2022 

35 

 

( ) ( )11212

2112

2112

212

1
................

................

++


























+

++

++

++

=

NN

A









 

 

( ) ( )112

2

2

2

2
................

................

++


























=

NN

A









 

 

( ) ( )1112

122

122

122

12

1

................

................

++





























+

+

+

+

=

NN

A











 

 

The steady state probability vector X, can be obtained by solving the system of equations XQ = 0 and the 

normalizing condition Xe =1 where e is a column vector of appropriate dimension having all elements equal to 1. 

The finitesimal generator Q is irreducible and has a special block tridiagonal structure. Thus, the system of linear 

equations is solved by using the matrix geometric method given by Neuts (1981). 

Let us partition the steady state probability vector X as 

 

  NXXXXX ....,,........., 210=                     (29) 

 

where  
( )11,00201000 .....,,.........,

+
=

NNXXXXX  and ( ) ( )11 + NiX  for Ni 1 . 

 

By implementing matrix - geometric method followed by Neuts (1981), we may examine the existence of a solution 

of the form 

1,1
1 = − iRXX i

i                                    (30) 

or 1,1 = − iRXX ii                                  (31) 

The system of equation XQ = 0 is given by 

021000 =+ AXBX                     (32) 

1.,,.........2,1,021101 −==++ +− NiAXAXAX iii                               (33) 

0101 =+− AXAX NN                     (34) 

If there exists matrix geometric solution, then the system of equations 
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XQ = 0 given non-linear matrix equation 

02
2

10 =++ ARRAA                     (35) 

where R is a square matrix of order (N+1) and it is the unique minimal non-negative solution to the matrix equation 

(35) with R  0. It is an irreducible non-negative matrix of spectral radius less than one. 

 By successive substitution in the recurrence relation, the matrix R of order (N+1) can be computed as 

follows: 

 

R(0) = 0                        (36) 

 

( ) ( ) 1
12

21
101 −− −−=+ AAnRAAnR  for n  0                               (37) 

 

Now, we have to calculate the steady state probability vector  NXXXXX ..,,.........,, 210=  that is also called the 

matrix geometric probability vector. 

 

For this purpose, we obtain the matrix form of the balance equations for the boundary states given by equations (31) 

and (35). 
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where X2 = X1 R. Equation (38) does not have any unique solution. 

The normalizing condition Xe =1 gives 
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which gives a unique solution for 

 

 NXXXXX ....,,.........,, 210=                                (40) 

 

where e is a column matrix of appropriate dimension having all elements 1. 

 

8. DISCUSSION 

 
In this paper, we have analyzed closed two node queueing network with preemptive different priority discipline. The 

equilibrium distribution has been provided for closed two node queueing networks with preemptive repeat identical 

and preemptive resume discipline. The steady state probability vector derived for the queueing network by using 

matrix-geometric approach can also be employed to determine various system characteristics. The priority queueing 

models are encountered in the design of computer networks (ATM networks), manufacturing systems and 

transportation networks. The queueing model with preemptive different priority service discipline has the property 

that the service time of the preempted unit on its re-entry does not depend on past preemptions, so the cost of the 

waiting times and the cost of the interrupted service may be minimized. Thus, the time-sharing computer systems 

with preemptive repeat different priority provide faster responses and minimize delay times. 
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