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ABSTRACT 

In machine learning and pattern recognition, dimensionality reduction can significantly enhance classifiers' 

discriminative performance and efficiency. Ratio Sum (RS) is a novel Linear Discriminant Analysis (LDA) variant 

that aims to optimise each dimension's projection matrix. However, RS does not consider the data's local geometric 

structure, which may lead to suboptimal solutions. An algorithm called Adaptive Neighbor Local Ratio Sum Linear 

Discriminant Analysis (ALDA) is proposed to overcome this limitation of RS. This algorithm employs an adaptive 

neighbour construction method to build the adjacency matrix, preserving the local geometric structure of the data 

and facilitating the construction of inter-class and intra-class matrices. This approach helps in finding a better 

representation of the data. Furthermore, the method utilizes an efficient non-parametric neighbourhood assignment 

strategy to construct the adjacency matrix, eliminating the need to adjust kernel parameters. Comparative 

experiments on UCI datasets and face datasets validate the effectiveness of this algorithm. 

 

Keywords: Dimensionality Reduction, Pattern Recognition, Machine Learning, Linear Discriminated Analysis, 

Ratio Sum.  

 

1. INTRODUCTION 

 

In many data processing tasks in machine learning and pattern recognition, high-dimensional data is involved. High-

dimensional data typically possesses an underlying low-dimensional structure that can effectively describe the 

variations between data points. Therefore, in data preprocessing, dimensionality reduction is considered one of the 

crucial steps to uncover the low-dimensional structure of data and enhance discriminative performance (Batool et 

al., 2023). Over the past few decades, there have been numerous unsupervised and supervised dimensionality 

reduction methods. Among them, Principal Component Analysis (PCA) (Huang et al., 2023) and Linear 

Discriminate Analysis (LDA) (Cao et al., 2023) are the most well-known unsupervised and supervised feature 

extraction methods, respectively. 

 

LDA aims to find the optimal representation of data in low dimensions by maximizing the between-class scatter 

matrix and minimizing the within-class scatter matrix, effectively achieving feature extraction for data classification. 

The LDA algorithm can be formulated as an optimization problem based on the trace ratio (TR) criterion. However, 

the TR-based LDA cannot obtain a closed-form global optimal solution. Therefore, some researchers transformed 

the TR criterion into a ratio trace (RT) criterion, which can be solved using generalized eigenvalue decomposition. 

However, the solutions obtained through generalized eigenvalue decomposition are suboptimal and may lead to 

uncertainty in subsequent classification or clustering performance. Additionally, LDA has other drawbacks, such as 

sensitivity to small sample sizes, susceptibility to outliers, and limitations on maximum dimensionality reduction. 

The Maximum Margin Criterion (MMC) ( Souza et al., 2023) was developed in response to these concerns. It 

effectively resolves the aforementioned challenges by maximising the average margin between each class. 

 

The incapacity of LDA to handle manifold data is another drawback. In an effort to address this issue, scientists 

have developed graph-based techniques that make use of the connections among data points in an effort to maintain 

the local geometric structure of the data. Inspired by Locality Preserving Projection (LPP)( Shi  et al., 2023) and 

Local Fisher Discriminated Analysis (LDA) (  Li et al., 2023), Local Fisher Discriminated Analysis (LFDA) creates 

an adjacency matrix to mimic the local geometric structure of data and uses it to produce between-class and within-

class scatter matrices. This makes it easier to optimise the objective function by precisely describing the geometric 

and discriminative structures of the data. Furthermore, (Li et al., 2021) proposed the Locality Sensitive Discriminate 

Analysis (LSDA) algorithm, which maximises the distance between data points of different classes within local 

regions by using predefined graphs, namely, intra-class and inter-class graphs, to compute the projection matrix. 
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 Nevertheless, LFDA has a flaw in that it uses kernel functions to build its adjacency matrix, which leaves it 

vulnerable to noise and redundant features and leads to less-than-ideal categorization. 

 

Dynamic Maximum Entropy Graph (DMEG) (Wang et al., 2022) and Adaptive Local Linear Discriminated 

Analysis (ALLDA) (JinlongQu et al., 2023) are two recent studies that scholars have carried out to address this 

problem. Adjacency matrices for data samples are adaptively constructed using the ALLDA method, which 

iteratively updates them to minimise the effects of noise and redundant features while maintaining the local data 

structure. However, ALLDA introduces an L0 norm constraint, which tends to yield trivial solutions. Therefore, the 

DMEG algorithm was proposed, which imposes a maximum entropy regularization constraint on the adjacency 

matrix to avoid trivial solutions. 

 

However, all the algorithms mentioned above are still based on the TR criterion for feature extraction. Research 

indicates that the TR criterion tends to select projection directions with smaller overall sample variances, making it 

difficult to maximize the representation of the most representative information within the data samples after 

projection into the subspace. 

 

To address this issue, researchers have proposed the RS criterion (Yan et al., 2022). This method attempts to make 

samples of the same category as close as possible in each dimension after projection, while keeping different 

samples as far apart as possible in each dimension. The goal is to maximize the ratio of between-class variance to 

within-class variance in each dimension. However, the aforementioned algorithms based on the RS criterion only 

consider the overall variance of the samples, ignoring the local geometric structure of the data. 

Therefore, in order to overcome the limitation of the RS criterion not considering the local geometric structure of the 

data and to better preserve the local geometric structure, this paper proposes an Adaptive Neighbor Local Ratio Sum 

Linear Discriminate Analysis (ANLRSLDA) algorithm. This algorithm can better preserve the local geometric 

structure of the data and avoid introducing kernel parameters, thereby finding a more optimal representation of the 

data. Finally, comparative experiments are conducted on datasets such as YaleB, Pose27, UMIST, and UCI datasets. 

The experimental results show that this method achieves high classification accuracy and, in most cases, 

outperforms the compared algorithms. 

 

2. THEORETICAL ANALYSIS 
 

2.1 Ratio Sum 

Let the data matrix be Y= [𝑦1, 𝑦2 ,⋯ , 𝑦𝑛] ∈ S
𝑑×𝑛, where n represents the total number of samples and each sample 

𝑦
𝑖
∈S𝑑×1 has d-dimensional features. The objective of the TR problem is to find a projection matrix Z ∈S𝑑×𝑚, which, 

through X = ZUY, projects high-dimensional data into low-dimensional data X ∈S𝑑×𝑚. The projection matrix Z can 

be obtained by solving the following equation: 

                                                                𝑍∗ = arg max
tr(𝑍U𝑇

¯

𝑏𝑍)

tr(𝑍U𝑇
¯

𝑤𝑍)
                                                                         (1) 

Where 𝑇
¯

𝑏, 𝑇
¯

𝑧 represent the between-class scatter matrix and within-class scatter matrix, respectively. ni represents 

the number of samples in the i-th class, μi and μ represent the means of the samples in the i-th class and all samples, 

respectively. 

 

𝑇
¯

𝑏 = ∑  𝑐
𝑖=1 ∑  

𝑛𝑖
𝑗=1 (𝑦𝑖𝑗 − 𝜇𝑖) (𝑦𝑖𝑗 − 𝜇𝑖)

U

 (2) 

       𝑇
¯

𝑤 = ∑  𝑐
𝑖=1 𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)

U                                                                       (3) 

 

The TR problem can also be written in the following form: 

 

                                                         𝑍∗ = arg max
∑  𝑘
𝑖=1 𝑍𝑖

U𝑇
¯

𝑏𝑍𝑖

∑  𝑘
𝑖=1 𝑍𝑖

U𝑇
¯

𝑧𝑍𝑖

                                                                                 (4) 
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 When using the TR criterion for dimensionality reduction, this method tends to project onto directions with smaller 

variance. This leads to a situation where if there is small variance in the projection direction, the resulting subset will 

have difficulty maximizing the representation of the most representative information within the data. 

To address this issue, Nei et al. proposed an RS criterion to avoid selecting directions with smaller variance and 

instead project onto directions with larger variance. The optimization problem can be formulated as follows: 

                                                                       𝑍∗ = arg max = ∑  𝑘
𝑖=1

𝑍𝑖
U𝑇𝑏𝑍𝑖

𝑍𝑖
U𝑇𝑧𝑍𝑖

                                                               (5) 

Theoretically, based on the proof in (Juefei-Xu  et al., 2015), it can be known that TR tends to select features with 

smaller variance, while RS can avoid this situation. To briefly illustrate this advantage of RS, consider the scenario 

with three independent features, and two of them need to be retained. The numerical relationships for TR can be 

expressed as: 

                                                                            
10+0.1

1+0.1
<

15+10

1+1
<

15+0.1

1+0.1
                                                                    (6) 

Therefore, for TR, the first and third projection directions may be chosen. In contrast, the numerical relationships for 

RS are: 

                                                                        
10

1
+

0.1

0.1
<

15

1
+

0.1

0.1
<

10

1
+

15

1
                                                             (7) 

Clearly, the first and second projection directions exhibit stronger discriminative performance, implying that the first 

and second projection directions should be chosen. However, if we use the TR criterion, then the first and third 

projection directions would be selected, with the third projection direction having little discriminative capability. 

The simple example above demonstrates that RS indeed avoids selecting projection directions with smaller variance 

to best represent the most representative information within the data. 

Let the data matrix be Y= [𝑦1, 𝑦2 ,⋯ , 𝑦𝑛] ∈ S
𝑑×𝑛, where n represents the total number of samples and each sample 

𝑦
𝑖
∈S𝑑×1 has d-dimensional features. The objective of the TR problem is to find a projection matrix Z ∈S𝑑×𝑚, which, 

through X = ZUY, projects high-dimensional data into low-dimensional data X ∈S𝑑×𝑚. The projection matrix Z can 

be obtained by solving the following equation: 

                                                                          𝑍∗ = argmax
tr(𝑍U𝑇

¯

𝑏𝑍)

tr(𝑍U𝑇
¯

𝑤𝑍)
                                                                    (1) 

Where 𝑇
¯

𝑏, 𝑇
¯

𝑧 represent the between-class scatter matrix and within-class scatter matrix, respectively. ni represents 

the number of samples in the i-th class, μi and μ represent the means of the samples in the i-th class and all samples, 

respectively. 

 

                                                                  
𝑇
¯

𝑏 = ∑  𝑐
𝑖=1 ∑  

𝑛𝑖
𝑗=1 (𝑦𝑖𝑗 − 𝜇𝑖) (𝑦𝑖𝑗 − 𝜇𝑖)

U

                                                    

(2) 

                                                                           𝑇
¯

𝑤 = ∑  𝑐
𝑖=1 𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)

U
                                                      (3) 

 

The TR problem can also be written in the following form: 

 

                                                                           𝑍∗ = arg max
∑  𝑘
𝑖=1 𝑍𝑖

U𝑇
¯

𝑏𝑍𝑖

∑  𝑘
𝑖=1 𝑍𝑖

U𝑇
¯

𝑧𝑍𝑖

                                                                (4) 

 

When using the TR criterion for dimensionality reduction, this method tends to project onto directions with smaller 

variance. This leads to a situation where if there is small variance in the projection direction, the resulting subset will 

have difficulty maximizing the representation of the most representative information within the data. 

To address this issue, Nei et al. proposed an RS criterion to avoid selecting directions with smaller variance and 

instead project onto directions with larger variance. The optimization problem can be formulated as follows: 

                                                                             𝑍∗ = arg max = ∑  𝑘
𝑖=1

𝑍𝑖
U𝑇𝑏𝑍𝑖

𝑍𝑖
U𝑇𝑧𝑍𝑖

                                                        (5) 

Theoretically, based on the proof in (Juefei-Xu  et al., 2015), it can be known that TR tends to select features with 

smaller variance, while RS can avoid this situation. To briefly illustrate this advantage of RS, consider the scenario 
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 with three independent features, and two of them need to be retained. The numerical relationships for TR can be 

expressed as: 

                                                                            v
10+0.1

1+0.1
<

15+10

1+1
<

15+0.1

1+0.1
                                                                   (6) 

Therefore, for TR, the first and third projection directions may be chosen. In contrast, the numerical relationships for 

RS are: 

                                                                          
10

1
+

0.1

0.1
<

15

1
+

0.1

0.1
<

10

1
+

15

1
                                                           (7) 

Clearly, the first and second projection directions exhibit stronger discriminative performance, implying that the first 

and second projection directions should be chosen. However, if we use the TR criterion, then the first and third 

projection directions would be selected, with the third projection direction having little discriminative capability. 

The simple example above demonstrates that RS indeed avoids selecting projection directions with smaller variance 

to best represent the most representative information within the data. 

Table 1: Data feature 

Feature Projection direction 1 Projection direction 2 Projection direction 3 

Distance between 

classes 

15 10 0.1 

Intra-class distance 1 1 0.1 

Population variance 16 11 0.2 

Ratio  15 10 1 

 

While RS can avoid choosing projection directions with smaller variance to best represent the most representative 

information within the data, it does not consider the local geometric structure of the data. Therefore, considering 

embedding an adaptive nearest neighbor graph into RS to select the optimal projection direction is worthwhile. 

 

2.2 Local Fisher Discriminates Analysis (LFDA) 

 

In manifold data, data from the same class often form several clusters distributed in various locations in the original 

space. Traditional linear discriminates analysis algorithms tend to overlook the local characteristics of the data when 

calculating scatter, resulting in poor dimensionality reduction performance when dealing with manifold data. To 

address this issue, the LFDA algorithm was proposed in (Li et al., 2023). 

LFDA constructs within-class adjacency matrix F
¯

z and between-class adjacency matrix F
¯

b using a Gaussian kernel 

function, which is formulated as follows, where Nk represents the samples of class k. 

                                                           F
¯

ij = {−
∥
∥yi−yj∥

∥
2

2

2σ2
, y
i
, y
j
∈ Mk

0,  otherwise 

                                                                              (8) 

Using these two adjacency matrices, LFDA constructs the between-class scatter matrix T
¯

b and the within-class 

scatter matrix T
¯

z. T
¯

bandT
¯

z  can be represented as follows: 

                                                                            T
¯

b = YN
¯

bY
U
                                                                                     (9) 

                                                                             T
¯

Z = YN
¯

zY
U                                                                                  (10)     

Here, Nz = F
¯

z − F
¯

w, Nb = D
¯

b − F
¯

bare n-dimensional Laplacia n matrices, where E
¯

bandE
¯

z are degree matrices, with 

E
¯

b,ii = ∑  n
j=1 Fb,ij, E

¯

z,ii = ∑  n
j=1 Fz,ij. 

Therefore, the objective function of LFDA can be obtained by solving the following equation: 

                                                          

ZLFDA
∗ = arg maxtr(

ZUT
¯

bZ

ZUT
¯

zZ

) =

argmaxtr (
ZUYMbY

UZ

ZUYMzY
UZ
)

                                                                    (11) 
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 Because LFDA constructs adjacency matrices through a kernel function, this graph construction approach is 

susceptible to the choice of kernel parameters, leading to suboptimal classification results. To address this issue, an 

adaptive construction of the data's adjacency matrix is achieved by leveraging the local geometric structure between 

data points, thereby preserving the data's local information and avoiding the introduction of additional hyper 

parameters. 

 

3. ADAPTIVE NEIGHBOR LOCAL RATIO SUM LINEAR DISCRIMINATES 

ANALYSIS ALGORITHM 
 

3.1 Adaptive Neighbor Graph Construction 

 

Let y
i
∈ Sd×1 neighbors be defined as the k nearest data points to y

i
in the dataset, using the Euclidean distance as the 

distance metric, i.e., ei,j
y
= ∥
∥y

i
− y

j∥
∥
2

2
represents the distance between the i-th data point, y

i
, and the j-th data point, 

y
j
. F∈ Sn × n is the adjacency matrix between data points, where Fij is the element in the i-th row and j-th column of 

the matrix F, indicating the neighbor relationship between the i-th data point and the j-th data point. All data points 

{y₁, y₂, ...,yn} can be considered as neighbors of the i-th data point, y
i
, with weights Fij. Smaller distances, d(y

i
, y

j
), 

result in larger Fij values, and vice versa. However, this approach would make the points closest to xi have a weight 

of 1 as neighbors of y
i
. Therefore, a regularization parameter λ is introduced so that each point in the data will have 

some weight as neighbors of y
i
. Fij can be computed using the following formula: 

 

                                                       min
Gi
U1=1,0<Gij<1

 ∑  n
j=1 (∥∥yi − yj∥

∥
2

2
Fij + λFij

2)                                                           (12) 

Where Gi
U is the i-th row vector of the matrix F, and λ =

k

2
ei,k+1
y

−
1

2
∑  k
j=1 ei,j

y
. Solving the equation above yields: 

                                                                            Fij =
ei,k+1
y

−ei,j
y

kei,k+1
y

−∑  k
j=1 ei,j

y                                                                          (13) 

Define Fb and Fz as the between-class adjacency matrix and within-class adjacency matrix, respectively: 

                                                                              
Fb = {

Fij, yi ≠ y
j

0,  otherwise                                                                     (14) 

                                                                            Fw = {
Fij, yi = y

j
= c

0,  otherwise 
                                                                    (15) 

Where y
i
andy

j
 are the class labels of the data. Clearly, the adjacency matrix F = Fb + Fz. 

 

3.2 Adaptive Neighbor Local Ratio Sum Linear Discriminated Analysis 

 

By obtaining the within-class weight matrix Fz and between-class weight matrix Fb through adaptive neighbor 

graph construction the RS objective function is as shown in Equation (5). However, considering that the objective 

function is optimized by seeking the maximum value, it is possible to obtain suboptimal results when Zi
UTZxi is too 

small to meet the maximization condition. Therefore, an equivalent transformation of Equation (5) is performed, and 

an orthogonal constraint ZUZ = I  is added to obtain the new objective function as follows: 

                                                                 Z∗ = arg min
zUz=I

  = ∑  m
i=1

Zi
UTZxi

Zi
UTbxi

                                                                   (16)      

Where Tz and Tb represent the within-class scatter matrix and between-class scatter matrix, defined as follows: 

                                                                     Tz =
1

2
∑  n
i=1 ∑  n

j=1 Fz,ij (yi − yj) (yi − yj)
U

                                            

(17)   

                                                                     Tb =
1

2
∑  n
i=1 ∑  n

j=1 Fb,ji (yi − yj) (yi − yj)
U

                                            

(18) 

Expanding Tz and Tb separately: 
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Tz =
1

2
∑  n
i=1 ∑  n

j=1 Fz,ij (yi − yj) (yi − yj)
U

=

1

2
∑  n
i=1 ∑  n

j=1 Fz,ij (yiyi
U + y

j
y
j
U − y

j
y
i
U − y

i
y
j
U) =

∑  n
i=1 (∑  n

j=1 Fz,ij)yiyi
U − ∑  n

i,j=1 Fz,ijyjyj
U =

YEzY
U − YEzY

U = YMzY
U

                                                       (19) 



Tc =
1

2
∑  n
i=1 ∑  n

j=1 Fb,ij(yi − yj)(yi − yj)
U
=

1

2
∑  n
i=1 ∑  n

j=1 Fb,ij(yiyi
U + yjyj

U − yjyi
U − yiyj

U) =

∑  n
i=1 (∑  n

j=1 Fb,ij)yiyi
U − ∑  n

i,j=1 Fb,ijyiyi
U =

YEbY
U − YEbY

U = YMbY
U

                                           (20)        

For Equations (19) and (20), Mzand Mbare the Laplacian matrices for within-class and between-class, respectively. 

EzandEbare n-dimensional diagonal matrices, where Ez,ii = ∑  n
j=1 Fz,ij, Eb,ii = ∑  n

j=1 Fb,ijsubstituting into Equation 

(16), the final objective function for RS is as follows: 

                                                    Z∗ = arg min
ZUZ=I

  = ∑  m
i=1

zi
UYUzY

UZi

zi
UYMbY

UZi
                                                             (21) 

In the next section, the process of solving the objective function will be introduced. 

3.3 Solving the Objective Function 

 

In this section, a method called Greedy RS, as introduced in (Zhang et al., 2020 ), will be used to solve the objective 

function. The solving process starts from Equation (22): 

                                                         Z∗ = argmin
zm

  = ∑  m
i=1

zi
UYUzY

UZi

zi
UYMbY

UZi
                                                                      (22) 

Subject to the constraint: zm
U z₁ = zm

U z2 = … = zm
U zm-1 = 0. Since this objective function is binomial, the solution 

should depend on the direction rather than the length, so it can be scaled as follows: 

                                                                         zm
U YMbY

UZm = 1                                                                              (23)       

Considering the above constraints, by introducing the Lagrange operator η and β = [β₁, β₂, …, βₘ₋₁], the 

corresponding Lagrange equation is obtained: 

∑  m−1
i=1 βizm

U zi − η(zm
UYMbY

UZm − 1)                                                        (24)         

Taking the derivative of M with respect to wm and setting the derivative result to 0, as shown below: 

                                                                                    
∂L(zm,η,β)

∂zm
= 0                                                                          (25) 

Namely: 

2YMzY
UZm − ∑  m−1

i=1 βizi − 2ηYMbY
UZm = 0                                              (26) 

Pre-multiplying the equation above by z1
U(YMbY

U)−1, ⋯ , zm−1
U (YMbY

U)−1resulting in m - 1 equation, as follows: 

 

                                                         

{
 
 
 

 
 
 

β
1
z1
U(YMbY

U)−1z1 + ⋯+ β
m−1

z1
U(YMbY

U)−1zm−1 =

2z2
U(YU)−1Mb

−1MzY
Uzm

β
1
z2
U(YMbY

U)−1z1 + ⋯+ β
m−1

z2
U(YMbY

U)−1zm−1 =

2z2
U(YU)−1Mb

−1MzY
Uzm

⋯

β
1
zm−1
U (YMbY

U)−1z1 + ⋯+ β
m−1

zm−1
U (YMbY

U)−1zm−1 =

2zm−1
U (YU)−1Mb

−1MzY
Uzm

                       (27) 

 

To simplify the calculations, define the following equations: 

                                                                             βm−1 = [β
1
, β
2
, ⋯ , β

m−1
]                                                             (28)   

Zm−1 = [z1, z2, ⋯ , zm−1]                                                              (29) 

                                                                           Vm−1 = Zm−1
U (YMbY)

−1Zm−1                                                         (30)          

Vij
m−1 = zi

U(YMbY)
−1zj                                                               (31)     

Then, the m - 1 equations inEquation (27) can be represented as follows: 

                                                                 βm−1 = 2[Vm−1]−1[Zm−1]U(YU)−1Mb
−1MzY

Uzm                                     (32)            
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 Pre-multiplying Equation (26) by (XLbXT)⁻¹ yields: 

                                                    2(YU)−1Mb
−1LwY

Uzm −∑  m−1
i=1 βi(XMbY

U)−1wi − 2ηzm = 0                              (33)                                   

Finally, by combining Equation (32) and Equation (33), we obtain: 

                                                       
{I − (YMbY

U)−1Zm−1[Vm−1]−1[Zm−1]U}

(YU)−1Mb
−1MzY

Uzm = ηzm
                                                           (34)                             

 

When m = 1, Equation (34) can be written as MzY
Uz1 = ηMzY

Uzm. Clearly, z1 is the eigenvector corresponding to 

the smallest eigenvalue obtained through generalized eigenvalue decomposition of (YU)−1Mb
−1MzY

U. When m = 2, it 

is known that Z1 = z1, and by substituting it into Equation (34), we can obtain the eigenvector z2 corresponding to 

the next smallest eigenvalue. This process can be iterated to obtain the m columns of the projection matrix. Below is 

a summary of the algorithm steps for the Adaptive Neighbor Local Ratio Sum Linear Discriminate Algorithm. 

Algorithm 1 (Adaptive Neighbor Local Ratio Sum Linear Discriminate Algorithm): 

Input: Data Y =[y₁, y₂, …, yn] ∈ Sd × n, class labels X ={xi}i=1
n  = 1, number of neighbors k. 

Compute the adjacency matrix F. 

Obtain the within-class adjacency matrix Fz and between-class adjacency matrix Fb through the adjacency matrix F. 

Compute the within-class scatter matrix XLwXT and between-class scatter matrix YMbYU using Ew and Fb. 

Calculate the smallest eigenvector w1 of (YU)−1Mb
−1MzY

U. 

Use Equation (34) iteratively to compute the eigenvectors z2, z3, …,zm corresponding to the smallest eigenvalues. 

Output: Z*. 

The computational complexity of this algorithm mainly lies in constructing the adjacency matrix, matrix inversion, 

and solving the projection matrix. Matrix multiplication and addition computational complexities are not considered 

for now. The computational complexity of constructing the adjacency matrix is O(n²e). The computational 

complexity of matrix inversion is O(e³). The computational complexity of solving the eigenvectors in each iteration 

is O(ne² + n²e), resulting in a computational complexity of O(nme² + n²me) for obtaining the projection matrix. 

Since n ≫ e, the overall computational complexity of this algorithm is O(nme² + n²me). 

 

4. EXPERIMENTS AND ANALYSIS 
 

In this paper's experiments, MATLAB R2016b was used to implement various algorithms on a computer with 128 

GB of RAM and an Intel i9-10980XE 3.0 GHz CPU. To validate the effectiveness of this algorithm, experiments 

were conducted comparing the ANLRSLDA algorithm with MMC, LSDA, LFDA, ALLDA, DMEG, Greedy RS, 

and other algorithms on the YaleB, Pose27, UMIST face datasets, and three UCI datasets. During the experiments, 

only preprocessing was applied to the face datasets. The projection matrix Z* was obtained through training, and 

then dimensionality reduction was performed on all data. Finally, a nearest-neighbor classifier based on Euclidean 

distance was used to classify the reduced data. The experiments were repeated 10 times to obtain the algorithm's 

accuracy and standard deviation. 

 

4.1  Parameter Settings 

In this experiment, as both the proposed algorithm and LSDA, LFDA, ALLDA, DMEG, and Greedy RS algorithms 

involve parameter selection, the parameters were carefully chosen. For LSDA, the weight parameter β for intra-class 

and inter-class graphs was varied between 0 and 1. Following the empirical values from literature (Wang et al., 

2022), the regularization parameter η for DMEG was set to 1 to avoid trivial solutions. Additionally, the number of 

intra-class neighbor’s kin in the proposed algorithm, LSDA, LFDA, ALLDA, DMEG, and Greedy RS algorithms 

was varied from 1 to ni - 1, where ni represents the minimum number of samples in each class. The number of non-

class neighbor’s kout for LSDA was fixed at 10. Finally, hyper parameter search tools were employed to obtain the 

optimal parameters for each algorithm. 

4.2 Dataset Description and Data Preprocessing 

In this experiment, a total of six datasets were used for comparative analysis, as detailed in Table 2. These datasets 

include three face datasets and three UCI datasets. The face datasets consist of YaleB, Pose27, and UMIST, while 

the UCI datasets are Chess, Cancer, and Balance. The YaleB face dataset comprises more than 2,400 color face 

images of 38 individuals, each with pixel dimensions of 32x32. Each individual has approximately 64 near-frontal 

images taken under different lighting conditions. The Pose27 dataset is a subset of the PIE dataset, consisting of 

3,329 pose photos of 68 individuals, with each photo having pixel dimensions of 64x64. The UMIST face dataset 

contains 1,012 images of 20 individuals, each with pixel dimensions of 32x32. These images cover a range of poses 

from side profiles to front views, representing a variety of ethnicities, genders, and appearances. 
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Table 2: Dataset Description 

 

Data Set Original 

Dimensions 

Number Of 

Samples 

Number Of Categories Dimensions After PCA 

Preprocessing 

YaleB 32×32 2 414 38 107 

Pose27 64×64 3 329 68 68 

UMIST 32×32 1 012 20 67 

Chess 36 3 196 2 — 

Cancer 9 683 2 — 

Balance 4 625 3 — 

 

During the experiment, only the face datasets were scaled, and PCA was applied to preprocess the training samples 

to remove zero space, retaining 95% of the original data's variance. This was done to avoid singularity in scatter 

matrices, which could occur due to zero space in the samples when comparing algorithms. 

4.3 UCI Dataset Experiments and Analysis 

For the UCI datasets, experiments were conducted on Chess, Balance, and Cancer datasets at training rates of 10%, 

20%, 30%, and 40%. Table 3 lists the recognition rates and corresponding dimensions for each algorithm in the 

three UCI datasets the data in bold represents the highest recognition rate and standard deviation at that training rate. 

From Table 3, it can be observed that the ANLRSLDA algorithm performs the best among all algorithms on the 

three UCI datasets, with recognition rates approximately 1% higher than the other algorithms in each case. 

Furthermore, when using graph embedding methods such as LSDA and LFDA, the proposed algorithm consistently 

achieves approximately a 2% higher recognition rate. For the adaptive graph construction method ALLDA, the 

proposed algorithm outperforms it by 3-4% at training rates of 10% and 20%. Additionally, compared to the Greedy 

RS algorithm, the proposed algorithm consistently exhibits better recognition rates than other algorithms. 

In the Chess dataset, the ANLRSLDA algorithm consistently achieves the highest recognition rates across all four 

training rates, approximately outperforming each of the comparison algorithms by 1-2 percentage points. Notably, at 

a training rate of 20%, ANLRSLDA surpasses the Greedy RS algorithm by 5.08 percentage points. 

In the Cancer and Balance datasets, although the recognition rates of all algorithms are relatively close, 

ANLRSLDA consistently outperforms the other algorithms by approximately 1 percentage point. In summary, 

across the three UCI datasets, ANLRSLDA demonstrates significantly superior performance compared to other 

methods. 

4.4 Face Dataset Experiments and Analysis 

For the face datasets, experiments were conducted on YaleB, Pose27, and UMIST datasets at training rates of 10%, 

20%, 30%, and 40%. Table 4 presents the recognition rates and corresponding dimensions for each algorithm across 

the three face datasets. Additionally, Figures 1, 2, and 3 visualize the accuracy obtained by seven dimensionality 

reduction methods at various dimensions in the YaleB, Pose27, and UMIST datasets, respectively. Bold data in 

Table 4 represents the highest recognition rate and standard deviation at each training rate. 

 

Table 3: Recognition rate in UCI dataset 

Data set Algorithm Accuracy 

Chess MMC 95.05±0.33(9) 

LSDA 95.90±1.00 (13) 

LFDA 94.73±0.89(15) 

ALLDA 95.77±0.50 (11) 
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 DMEG 95.95±0.74(15) 

Greedy RS 93.79±0.65(11) 

ANLRSLDA 96.92±0.14(15) 

Cancer MMC 90.04±0.42(8) 

LSDA 89.36±0.93(8) 

LFDA 88.94±0.92(7) 

ALLDA 89.00±0.91(9) 

DMEG 89.06±2.39(7) 

Greedy RS 88.45±1.15(9) 

ANLRSLDA 90.53±0.46(8) 

Balance MMC 91.04±1.44(4) 

LSDA 91.31±1.73(3) 

LFDA 91.52±1.84(3) 

ALLDA 86.93±4.53(3) 

DMEG 91.25±2.05(3) 

Greedy RS 91.09±2.07(2) 

ANLRSLDA 91.68±1.97(2) 

 

 

 

 

Table 4: Recognition rate in face dataset 

Data set Algorithm Accuracy 

YaleB MMC 93.69±0.75(63) 

LSDA 92.83±0.73 (72) 

LFDA 91.20±1.53 (33) 

ALLDA 93.69±0.50 (68) 

DMEG 92.27±0.85(37) 

Greedy RS 92.06±0.25(28) 

ANLRSLDA 94.41±0.45(59) 

Pose27 MMC 96.38±0.39 (56) 

LSDA 97.36±0.08 (55) 

LFDA 96.70±0.01(15) 

ALLDA 97.28±0.29 (41) 

DMEG 97.62±0.29 (41) 

Greedy RS 97.07±0.18(24) 

ANLRSLDA 98.29±0.47 (33) 

UMIST MMC 99.11±0.85(20) 

LSDA 98.84±0.56 (50) 

LFDA 98.98±0.61(28) 

ALLDA 98.48±0.43 (61) 

DMEG 98.78±0.77(32) 

Greedy RS 98.81±0.92(30) 

ANLRSLDA 99.45±0.25(27) 
From Table 4, it is evident that ANLRSLDA outperforms other algorithms in most cases across the three face datasets. 

Furthermore, when using graph embedding methods such as LSDA and LFDA, ANLRSLDA consistently achieves 

approximately a 2% higher recognition rate. For the adaptive graph construction method ALLDA, ANLRSLDA's recognition 

rates are consistently 2-3% higher, and in the UMIST dataset, ANLRSLDA outperforms ALLDA by 4-5%. Across datasets with 

different training rates, ANLRSLDA's recognition rates are significantly superior to Greedy RS. 
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Figure 1: Performance of each algorithm on the YaleB data set 
 

In the YaleB dataset, while ANLRSLDA's recognition rate is not significantly different from other algorithms at a 

training rate of 10%, as the training rate increases, ANLRSLDA starts to exhibit better recognition rates. At each 

training rate, ANLRSLDA consistently outperforms other algorithms by 1-2 percentage points. Figure 1 with table 5 

illustrates that ANLRSLDA achieves the highest recognition rates in most dimensions. However, it is observed that 

as the dimensionality increases to a certain extent, further dimension increase does not enhance algorithm accuracy. 

Instead, it rapidly decreases. This phenomenon is due to the fact that adding more features may not necessarily 

improve classification, potentially leading to a decline in recognition accuracy (Li et al., 2017). 

 

In the Pose27 dataset, when the training rate is 10%, ANLRSLDA's recognition rate is slightly lower than DMEG. 

However, with an increase in the training rate, ANLRSLDA's recognition rate starts to surpass all other algorithms. 

Figure 2 shows that ANLRSLDA consistently outperforms other algorithms in most dimensions. 

 

 
Figure 2: Performance of each algorithm on the Pose27 data set. 

 

 
Figure 3: Performance of each algorithm on the UMIST data set. 

 

In the UMIST dataset at various training rates, it is evident that ANLRSLDA consistently outperforms other 

algorithms, with significantly better performance at a training rate of 10%, surpassing LSDA and ALLDA. Figure 3 

demonstrates that on the UMIST dataset, all algorithms perform well, but ANLRSLDA's recognition rate remains 

consistently higher than other algorithms. In conclusion, the proposed algorithm exhibits excellent performance in 

face datasets. 
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 5. CONCLUSION 
 

In this work, we have introduced a dimensionality reduction algorithm called Adaptive Neighbor Local Ratio Sum 

Linear Discriminate Analysis (ANLRSLDA). The advantages of this algorithm lie in its ability to adaptively 

construct data's adjacency matrix based on the relationships between data points, effectively preserving the local 

geometric structure of the data. Additionally, the algorithm performs adaptive graph construction without 

introducing heat kernel parameters, and it can efficiently mitigate the influence of noise and redundant features in 

the original data space. Finally, comparative experiments have demonstrated the effectiveness of the proposed 

algorithm. Although the ANLRSLDA algorithm has shown promising results compared to other algorithms, there 

are still areas for further exploration. Future research may delve into discovering more optimal optimization 

methods for solving the RS problem and investigating how to learn improved adjacency matrices. 
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